DEV Community

loading...
Cover image for Metadata management for Digital Pathology

Metadata management for Digital Pathology

aventiortechnology
Aventior is a technology consulting firm that is into life sciences, artificial intelligence, machine learning, computer vision, object detection, satellite images, and so on.
Originally published at aventior.com ・1 min read

Label Extraction and AI for Digital Pathology

Tissue-based studies generate large amounts of histology data containing important biological information in the form of imagery and metadata. These digital pathology slides are labeled using text and barcodes for their identification. The older technologies used printed or handwritten labels for specimen labeling. The Label Extraction Solution uses state-of-the-art OCR technologies, image processing, and AI to read, understand, and store label data from digital pathology slides. Additional manual validation of the data leads to a highly automated process which reduces the time to search and find slides. The extracted label text is translated into a structured data format, stored in a database with search capabilities. This solution has significantly saved time and effort for pathologists by avoiding repeat sample orders, quick access to historic data, and accuracy.

Features of Digital Pathology

Archival/Retrieval
This platform performs the archival and retrieval of metadata using a standard data structure.

Decision Support
This program supports determinations, judgments, and courses of action to solve problems in decision-making

Data Harmonization
Standard structured datasets help to identify the outliers and trends

Quality Control
Easy search and access of all the datasets support further research and analytical activities

Remote Viewing
Easy search and access of all the datasets support further research and analytical activities.

Discussion (0)