DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

AutoAugment in PyTorch

Buy Me a Coffee

*Memos:

AutoAugment() can randomly augment an image with AutoAugmentPolicy as shown below:

*Memos:

  • The 1st argument for initialization is policy(Optional-Default:AutoAugmentPolicy.IMAGENET-Type:AutoAugmentPolicy). *AutoAugmentPolicy.IMAGENET, AutoAugmentPolicy.CIFAR10 or AutoAugmentPolicy.SVHN can be set to it.
  • The 2nd argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode). *If the input is a tensor, only InterpolationMode.NEAREST, InterpolationMode.BILINEAR can be set to it.
  • The 3rd argument for initialization is fill(Optional-Default:None-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
    • If all values are 255 <= x, it's white.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AutoAugment
from torchvision.transforms.v2 import AutoAugmentPolicy
from torchvision.transforms.functional import InterpolationMode

aa = AutoAugment()
aa = AutoAugment(policy=AutoAugmentPolicy.IMAGENET,
                 interpolation=InterpolationMode.NEAREST, fill=None)
aa
# AutoAugment(interpolation=InterpolationMode.NEAREST,
#             policy=AutoAugmentPolicy.IMAGENET)

aa.policy
# <AutoAugmentPolicy.IMAGENET: 'imagenet'>

aa.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

print(aa.fill)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

pIMAGENET_data = OxfordIIITPet( # `p` is policy.
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET)
)

pCIFAR10_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10)
)

pSVHN_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.SVHN)
)

pIMAGENETfgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET, fill=150)
    # transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET, fill=[150])
)

pIMAGENETfpurple_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET,
                          fill=[160, 32, 240])
)

pCIFAR10fgray_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10, fill=150)
)

pCIFAR10f1purple_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10,
                          fill=[160, 32, 240])
)

pSVHNfgray_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.SVHN, fill=150)
)

pSVHNfpurple_data = OxfordIIITPet(
    root="data",
    transform=AutoAugment(policy=AutoAugmentPolicy.SVHN,
                          fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
print()
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
print()
show_images1(data=pSVHN_data, main_title="pSVHN_data")
show_images1(data=pSVHN_data, main_title="pSVHN_data")
show_images1(data=pSVHN_data, main_title="pSVHN_data")
print()
show_images1(data=pIMAGENETfgray_data, main_title="pIMAGENETfgray_data")
show_images1(data=pIMAGENETfpurple_data,
             main_title="pIMAGENETfpurple_data")
print()
show_images1(data=pCIFAR10fgray_data, main_title="pCIFAR10fgray_data")
show_images1(data=pCIFAR10f1purple_data,
             main_title="pCIFAR10f1purple_data")
print()
show_images1(data=pSVHNfgray_data, main_title="pSVHNfgray_data")
show_images1(data=pSVHNfpurple_data,
             main_title="pSVHNfpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, p=AutoAugmentPolicy.IMAGENET,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            aa = AutoAugment(policy=p, interpolation=ip, fill=f)
            plt.imshow(X=aa(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="pIMAGENET_data", 
             p=AutoAugmentPolicy.IMAGENET)
show_images2(data=origin_data, main_title="pIMAGENET_data", 
             p=AutoAugmentPolicy.IMAGENET)
show_images2(data=origin_data, main_title="pIMAGENET_data", 
             p=AutoAugmentPolicy.IMAGENET)
print()
show_images2(data=origin_data, main_title="pCIFAR10_data", 
             p=AutoAugmentPolicy.CIFAR10)
show_images2(data=origin_data, main_title="pCIFAR10_data", 
             p=AutoAugmentPolicy.CIFAR10)
show_images2(data=origin_data, main_title="pCIFAR10_data", 
             p=AutoAugmentPolicy.CIFAR10)
print()
show_images2(data=origin_data, main_title="pSVHN_data", 
             p=AutoAugmentPolicy.SVHN)
show_images2(data=origin_data, main_title="pSVHN_data", 
             p=AutoAugmentPolicy.SVHN)
show_images2(data=origin_data, main_title="pSVHN_data", 
             p=AutoAugmentPolicy.SVHN)
print()
show_images2(data=origin_data, main_title="pIMAGENETfgray_data", 
             p=AutoAugmentPolicy.IMAGENET, f=150)
show_images2(data=origin_data, main_title="pIMAGENETfpurple_data", 
             p=AutoAugmentPolicy.IMAGENET, f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="pCIFAR10fgray_data", 
             p=AutoAugmentPolicy.CIFAR10, f=150)
show_images2(data=origin_data, main_title="pCIFAR10f1purple_data", 
             p=AutoAugmentPolicy.CIFAR10, f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="pSVHNfgray_data", 
             p=AutoAugmentPolicy.SVHN, f=150)
show_images2(data=origin_data, main_title="pSVHNfpurple_data", 
             p=AutoAugmentPolicy.SVHN, f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description


Image description

Image description


Image description

Image description

Qodo Takeover

Introducing Qodo Gen 1.0: Transform Your Workflow with Agentic AI

While many AI coding tools operate as simple command-response systems, Qodo Gen 1.0 represents the next generation: autonomous, multi-step problem-solving agents that work alongside you.

Read full post

Top comments (0)

Qodo Takeover

Introducing Qodo Gen 1.0: Transform Your Workflow with Agentic AI

Rather than just generating snippets, our agents understand your entire project context, can make decisions, use tools, and carry out tasks autonomously.

Read full post

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay