DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

ElasticTransform in PyTorch (2)

Buy Me a Coffee

*Memos:

ElasticTransform() can do random morphological transformation for an image as shown below. *It's about sigma and fill argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ElasticTransform
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

a5000s01_data = OxfordIIITPet( # `a` is alpha and `s` is sigma.
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=0.1)
    # transform=ElasticTransform(alpha=5000, sigma=[0.1, 0.1])
)

a5000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=1)
)

a5000s5_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5)
)

a5000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10)
)

a5000s20_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=20)
)

a5000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=40)
)

a5000s40_01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 0.1])
)

a5000s40_1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 1])
)

a5000s40_5_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 5])
)

a5000s40_10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 10])
)

a5000s40_20_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 20])
)

a5000s40_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 40])
)

a5000s01_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[0.1, 40])
)

a5000s1_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[1, 40])
)

a5000s5_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[5, 40])
)

a5000s10_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[10, 40])
)

a5000s20_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[20, 40])
)

a5000s40_40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=[40, 40])
)

a5000s5fgray_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5, fill=150)
)

a5000s10fgray_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10, fill=150)
)

a5000s5fpurple_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=5, fill=[160, 32, 240])
)

a5000s10fpurple_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=5000, sigma=10, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=a5000s01_data, main_title="a5000s01_data")
show_images1(data=a5000s1_data, main_title="a5000s1_data")
show_images1(data=a5000s5_data, main_title="a5000s5_data")
show_images1(data=a5000s10_data, main_title="a5000s10_data")
show_images1(data=a5000s20_data, main_title="a5000s20_data")
show_images1(data=a5000s40_data, main_title="a5000s40_data")
print()
show_images1(data=a5000s40_01_data, main_title="a5000s40_01_data")
show_images1(data=a5000s40_1_data, main_title="a5000s40_1_data")
show_images1(data=a5000s40_5_data, main_title="a5000s40_5_data")
show_images1(data=a5000s40_10_data, main_title="a5000s40_10_data")
show_images1(data=a5000s40_20_data, main_title="a5000s40_20_data")
show_images1(data=a5000s40_40_data, main_title="a5000s40_40_data")
print()
show_images1(data=a5000s01_40_data, main_title="a5000s01_40_data")
show_images1(data=a5000s1_40_data, main_title="a5000s1_40_data")
show_images1(data=a5000s5_40_data, main_title="a5000s5_40_data")
show_images1(data=a5000s10_40_data, main_title="a5000s10_40_data")
show_images1(data=a5000s20_40_data, main_title="a5000s20_40_data")
show_images1(data=a5000s40_40_data, main_title="a5000s40_40_data")
print()
show_images1(data=a5000fgray_data, main_title="a5000fgray_data")
show_images1(data=a10000fgray_data, main_title="a10000fgray_data")
show_images1(data=a5000fpurple_data, main_title="a5000fpurple_data")
show_images1(data=a10000fpurple_data, main_title="a10000fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, a=None, s=5, 
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if a != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            et = ElasticTransform(alpha=a, sigma=s,
                                  interpolation=ip, fill=f)
            plt.imshow(X=et(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="a5000s01_data", a=5000, s=0.1)
show_images2(data=origin_data, main_title="a5000s1_data", a=5000, s=1)
show_images2(data=origin_data, main_title="a5000s5_data", a=5000, s=5)
show_images2(data=origin_data, main_title="a5000s10_data", a=5000, s=10)
show_images2(data=origin_data, main_title="a5000s20_data", a=5000, s=20)
show_images2(data=origin_data, main_title="a5000s40_data", a=5000, s=40)
print()
show_images2(data=origin_data, main_title="a5000s40_01_data", a=5000,
             s=[40, 0.1])
show_images2(data=origin_data, main_title="a5000s40_1_data", a=5000,
             s=[40, 1])
show_images2(data=origin_data, main_title="a5000s40_5_data", a=5000,
             s=[40, 5])
show_images2(data=origin_data, main_title="a5000s40_10_data", a=5000,
             s=[40, 10])
show_images2(data=origin_data, main_title="a5000s40_20_data", a=5000,
             s=[40, 20])
show_images2(data=origin_data, main_title="a5000s40_40_data", a=5000,
             s=[40, 40])
print()
show_images2(data=origin_data, main_title="a5000s01_40_data", a=5000,
             s=[0.1, 40])
show_images2(data=origin_data, main_title="a5000s1_40_data", a=5000,
             s=[1, 40])
show_images2(data=origin_data, main_title="a5000s5_40_data", a=5000,
             s=[5, 40])
show_images2(data=origin_data, main_title="a5000s10_40_data", a=5000,
             s=[10, 40])
show_images2(data=origin_data, main_title="a5000s20_40_data", a=5000,
             s=[20, 40])
show_images2(data=origin_data, main_title="a5000s40_40_data", a=5000,
             s=[40, 40])
print()
show_images2(data=origin_data, main_title="a5000fgray_data", a=5000, f=150)
show_images2(data=origin_data, main_title="a10000fgray_data", a=10000, f=150)
show_images2(data=origin_data, main_title="a5000fpurple_data", a=5000,
             f=[160, 32, 240])
show_images2(data=origin_data, main_title="a10000fpurple_data", a=10000,
             f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="a5000s5fgray_data", a=5000, 
             s=5, f=150)
show_images2(data=origin_data, main_title="a5000s10fgray_data", a=5000, 
             s=10, f=150)
print()
show_images2(data=origin_data, main_title="a5000s5fpurple_data", a=5000, 
             s=5, f=[160, 32, 240])
show_images2(data=origin_data, main_title="a5000s10fpurple_data", a=5000, 
             s=10, f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description


Image description

Image description

AWS Security LIVE!

Tune in for AWS Security LIVE!

Join AWS Security LIVE! for expert insights and actionable tips to protect your organization and keep security teams prepared.

Learn More

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay