DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

ElasticTransform in PyTorch (3)

Buy Me a Coffee

*Memos:

ElasticTransform() can do random morphological transformation for an image as shown below. *It's about alpha and sigma argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ElasticTransform
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

a0s01_data = OxfordIIITPet( # `a` is alpha and `s` is sigma.
    root="data",
    transform=ElasticTransform(alpha=0, sigma=0.1)
    # transform=ElasticTransform(alpha=[0, 0], sigma=[0.1, 0.1])
)

a0s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=1)
)

a0s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=10)
)

a0s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=40)
)

a10s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=0.1)
    # transform=ElasticTransform(alpha=-10, sigma=0.1)
)

a10s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=1)
)

a10s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=10)
)

a10s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=40)
)

a100s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=0.1)
    # transform=ElasticTransform(alpha=-100, sigma=0.1)
)

a100s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=1)
)

a100s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=10)
)

a100s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=40)
)

a1000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=0.1)
    # transform=ElasticTransform(alpha=-1000, sigma=0.1)
)

a1000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=1)
)

a1000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=10)
)

a1000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=40)
)

a10000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=0.1)
    # transform=ElasticTransform(alpha=-10000, sigma=0.1)
)

a10000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=1)
)

a10000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=10)
)

a10000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=40)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=a0s01_data, main_title="a0s01_data")
show_images1(data=a0s1_data, main_title="a0s1_data")
show_images1(data=a0s10_data, main_title="a0s10_data")
show_images1(data=a0s40_data, main_title="a0s40_data")
print()
show_images1(data=a10s01_data, main_title="a10s01_data")
show_images1(data=a10s1_data, main_title="a10s1_data")
show_images1(data=a10s10_data, main_title="a10s10_data")
show_images1(data=a10s40_data, main_title="a10s40_data")
print()
show_images1(data=a100s01_data, main_title="a100s01_data")
show_images1(data=a100s1_data, main_title="a100s1_data")
show_images1(data=a100s10_data, main_title="a100s10_data")
show_images1(data=a100s40_data, main_title="a100s40_data")
print()
show_images1(data=a1000s01_data, main_title="a1000s01_data")
show_images1(data=a1000s1_data, main_title="a1000s1_data")
show_images1(data=a1000s10_data, main_title="a1000s10_data")
show_images1(data=a1000s40_data, main_title="a1000s40_data")
print()
show_images1(data=a10000s01_data, main_title="a10000s01_data")
show_images1(data=a10000s1_data, main_title="a10000s1_data")
show_images1(data=a10000s10_data, main_title="a10000s10_data")
show_images1(data=a10000s40_data, main_title="a10000s40_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, a=None, s=5, 
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if a != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            et = ElasticTransform(alpha=a, sigma=s,
                                  interpolation=ip, fill=f)
            plt.imshow(X=et(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="a0s01_data", a=0, s=0.1)
show_images2(data=origin_data, main_title="a0s1_data", a=0, s=1)
show_images2(data=origin_data, main_title="a0s10_data", a=0, s=10)
show_images2(data=origin_data, main_title="a0s40_data", a=0, s=40)
print()
show_images2(data=origin_data, main_title="a10s01_data", a=10, s=0.1)
show_images2(data=origin_data, main_title="a10s1_data", a=10, s=1)
show_images2(data=origin_data, main_title="a10s10_data", a=10, s=10)
show_images2(data=origin_data, main_title="a10s40_data", a=10, s=40)
print()
show_images2(data=origin_data, main_title="a100s01_data", a=100, s=0.1)
show_images2(data=origin_data, main_title="a100s1_data", a=100, s=1)
show_images2(data=origin_data, main_title="a100s10_data", a=100, s=10)
show_images2(data=origin_data, main_title="a100s40_data", a=100, s=40)
print()
show_images2(data=origin_data, main_title="a1000s01_data", a=1000, s=0.1)
show_images2(data=origin_data, main_title="a1000s1_data", a=1000, s=1)
show_images2(data=origin_data, main_title="a1000s10_data", a=1000, s=10)
show_images2(data=origin_data, main_title="a1000s40_data", a=1000, s=40)
print()
show_images2(data=origin_data, main_title="a10000s01_data", a=10000, s=0.1)
show_images2(data=origin_data, main_title="a10000s1_data", a=10000, s=1)
show_images2(data=origin_data, main_title="a10000s10_data", a=10000, s=10)
show_images2(data=origin_data, main_title="a10000s40_data", a=10000, s=40)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay