DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

FiveCrop in PyTorch

Buy Me a Coffee

*Memos:

FiveCrop() can crop an image into 5 parts(Top-left, Top-right, Bottom-left, Bottom-right and Center) as shown below:

*Memos:

  • The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()): *Memos:
    • It's [height, width].
    • It must be 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [size, size].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import FiveCrop

fc = FiveCrop(size=100)

fc
# FiveCrop(size=(100, 100))

fc.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s500_394origin_data = OxfordIIITPet( # `s` is size.
    root="data",
    transform=FiveCrop(size=[500, 394])
)

s300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=300)
)

s200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=200)
)

s100_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=100)
)

s50_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=50)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=10)
)

s1_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=1)
)

s200_300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[200, 300])
)

s300_200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(fcims, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'Bottom-left',
              'Bottom-right', 'Center']
    for i, fcim in zip(range(1, 6), fcims):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim)
    plt.tight_layout()
    plt.show()

plt.figure(figsize=[7, 9])
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data")
show_images1(fcims=s300_data[0][0], main_title="s300_data")
show_images1(fcims=s200_data[0][0], main_title="s200_data")
show_images1(fcims=s100_data[0][0], main_title="s100_data")
show_images1(fcims=s50_data[0][0], main_title="s50_data")
show_images1(fcims=s10_data[0][0], main_title="s10_data")
show_images1(fcims=s1_data[0][0], main_title="s1_data")
print()
show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data")
show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(im, main_title=None, s=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'Bottom-left',
              'Bottom-right', 'Center']
    if not s:
        s = [im.size[1], im.size[0]] 
    fc = FiveCrop(size=s)
    for i, fcim in zip(range(1, 6), fc(im)):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim)
    plt.tight_layout()
    plt.show()

plt.figure(figsize=[7, 9])
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(im=origin_data[0][0], main_title="s500_394origin_data")
# show_images2(im=origin_data[0][0], main_title="s500_394origin_data",
#              s=[500, 394])
show_images2(im=origin_data[0][0], main_title="s300_data", s=300)
show_images2(im=origin_data[0][0], main_title="s200_data", s=200)
show_images2(im=origin_data[0][0], main_title="s100_data", s=100)
show_images2(im=origin_data[0][0], main_title="s50_data", s=50)
show_images2(im=origin_data[0][0], main_title="s10_data", s=10)
show_images2(im=origin_data[0][0], main_title="s1_data", s=1)
print()
show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300])
show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay