DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

Pad in PyTorch

Buy Me a Coffee

*Memos:

Pad() can add padding to an image as shown below:

*Memos:

  • The 1st argument for initialization is padding(Required-Type:int or tuple/list(int)): *Memos:
    • It's [left, top, right, bottom] which can be converted from [left-right, top-bottom] or [left-top-right-bottom].
    • A tuple/list must be the 1D with 1, 2 or 4 elements.
    • A single value(int or tuple/list(int)) means [padding, padding, padding, padding].
    • Double values(tuple/list(int)) means [padding[0], padding[1], padding[0], padding[1]].
  • The 2nd argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when rotating an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
  • The 3rd argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Pad

pad = Pad(padding=100)
pad = Pad(padding=100, fill=0, padding_mode='constant')

pad
# Pad(padding=100, fill=0, padding_mode=constant)

pad.padding
# 100

pad.fill
# 0

pad.padding_mode
# 'constant'

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p0origin_data = OxfordIIITPet( # `p` is padding.
    root="data",
    transform=Pad(padding=0)
    # transform=Pad(padding=[0, 0])
    # transform=Pad(padding=[0, 0, 0, 0])
)

p50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=50)
)

p100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100)
)

p150_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=150)
)

pn50_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=Pad(padding=-50)
)

pn100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=-100)
)

pn150_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=-150)
)

p100_50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[100, 50])
)

pn100n50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[-100, -50])
)

p100n50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[100, -50])
)

p25_50_75_100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[25, 50, 75, 100])
)

pn25n50n75n100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[-25, -50, -75, -100])
)

p25n50_75n100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[25, -50, 75, -100])
)

p100fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=Pad(padding=100, fill=150)
)

p100fpurple_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, fill=[160, 32, 240])
)

p100pmconstant_data = OxfordIIITPet( # `pm` is padding_mode.
    root="data",                     # `const` is constant.
    transform=Pad(padding=100, padding_mode="constant")
)

p100pmedge_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, padding_mode="edge")
)

p100pmreflect_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, padding_mode="reflect")
)

p100pmsymmetric_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, padding_mode="symmetric")
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title='origin_data')
print()
show_images1(data=p0origin_data, main_title='p0origin_data')
show_images1(data=p50_data, main_title='p50_data')
show_images1(data=p100_data, main_title='p100_data')
show_images1(data=p150_data, main_title='p150_data')
print()
show_images1(data=p0origin_data, main_title='p0origin_data')
show_images1(data=pn50_data, main_title='pn50_data')
show_images1(data=pn100_data, main_title='pn100_data')
show_images1(data=pn150_data, main_title='pn150_data')
print()
show_images1(data=p0origin_data, main_title='p0origin_data')
show_images1(data=p100_50_data, main_title='p100_50_data')
show_images1(data=pn100n50_data, main_title='pn100n50_data')
show_images1(data=p100n50_data, main_title='p100n50_data')
print()
show_images1(data=p0origin_data, main_title='p0origin_data')
show_images1(data=p25_50_75_100_data, main_title='p25_50_75_100_data')
show_images1(data=pn25n50n75n100_data, main_title='pn25n50n75n100_data')
show_images1(data=p25n50_75n100_data, main_title='p25n50_75n100_data')
print()
show_images1(data=p100fgray_data, main_title='p100fgray_data')
show_images1(data=p100fpurple_data, main_title='p100fpurple_data')
print()
show_images1(data=p100pmconstant_data, main_title='p100pmconstant_data')
show_images1(data=p100pmedge_data, main_title='p100pmedge_data')
show_images1(data=p100pmreflect_data, main_title='p100pmreflect_data')
show_images1(data=p100pmsymmetric_data, main_title='p100pmsymmetric_data')

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, p=0, f=0, pm='constant'):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        pad = Pad(padding=p, fill=f, padding_mode=pm)
        plt.imshow(X=pad(im))
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title='origin_data')
print()
show_images2(data=origin_data, main_title='p0origin_data', p=0)
show_images2(data=origin_data, main_title='p50_data', p=50)
show_images2(data=origin_data, main_title='p100_data', p=100)
show_images2(data=origin_data, main_title='p150_data', p=150)
print()
show_images2(data=origin_data, main_title='p0origin_data', p=0)
show_images2(data=origin_data, main_title='pn50_data', p=-50)
show_images2(data=origin_data, main_title='pn100_data', p=-100)
show_images2(data=origin_data, main_title='pn150_data', p=-150)
print()
show_images2(data=origin_data, main_title='p0origin_data', p=0)
show_images2(data=origin_data, main_title='p100_50_data', p=[100, 50])
show_images2(data=origin_data, main_title='pn100n50_data', p=[-100, -50])
show_images2(data=origin_data, main_title='p100n50_data', p=[100, -50])
print()
show_images2(data=origin_data, main_title='p0origin_data', p=0)
show_images2(data=origin_data, main_title='p25p50p75p100_data',
             p=[25, 50, 75, 100])
show_images2(data=origin_data, main_title='pn25n50n75n100_data',
             p=[-25, -50, -75, -100])
show_images2(data=origin_data, main_title='p25n50_75n100_data',
             p=[25, -50, 75, -100])
print()
show_images2(data=origin_data, main_title='p100fgray_data', p=100,
             f=150)
show_images2(data=origin_data, main_title='p100fpurple_data', p=100,
             f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title='p100pmconstant_data', p=100, 
             pm='constant')
show_images2(data=origin_data, main_title='p100pmedge_data', p=100, 
             pm='edge')
show_images2(data=origin_data, main_title='p100pmreflect_data', p=100,
             pm='reflect')
show_images2(data=origin_data, main_title='p100pmsymmetric_data', p=100,
             pm='symmetric')
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description


Image description

Image description

Image description

Image description

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay