DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandAugment in PyTorch (3)

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as shown below. *It's about num_magnitude_bins and fill argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

nmb10_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(num_magnitude_bins=10)
)

nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=25)
)

nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=50)
)

nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=100)
)

nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=500)
)

nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=1000)
)

no1000nmb10_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=10)
)

no1000nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=25)
)

no1000nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=50)
)

no1000nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=100)
)

no1000nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=500)
)

no1000nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=1000)
)

m9nmb10_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=10)
)

m9nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=25)
)

m9nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=50)
)

m9nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=100)
)

m9nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=500)
)

m9nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=9, num_magnitude_bins=1000)
)

no1000m9nmb10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=10)
)

no1000m9nmb25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=25)
)

no1000m9nmb50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=50)
)

no1000m9nmb100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=100)
)

no1000m9nmb500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=500)
)

no1000m9nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=9, num_magnitude_bins=1000)
)

nmb10fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandAugment(num_magnitude_bins=10, fill=150)
    # transform=RandAugment(num_magnitude_bins=10, fill=[150])
)

nmb10fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_magnitude_bins=10, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=nmb10_data, main_title="nmb10_data")
show_images1(data=nmb25_data, main_title="nmb25_data")
show_images1(data=nmb50_data, main_title="nmb50_data")
show_images1(data=nmb100_data, main_title="nmb100_data")
show_images1(data=nmb500_data, main_title="nmb500_data")
show_images1(data=nmb1000_data, main_title="nmb1000_data")
print()
show_images1(data=no1000nmb10_data, main_title="no1000nmb10_data")
show_images1(data=no1000nmb25_data, main_title="no1000nmb25_data")
show_images1(data=no1000nmb50_data, main_title="no1000nmb50_data")
show_images1(data=no1000nmb100_data, main_title="no1000nmb100_data")
show_images1(data=no1000nmb500_data, main_title="no1000nmb500_data")
show_images1(data=no1000nmb1000_data, main_title="no1000nmb1000_data")
print()
show_images1(data=m9nmb10_data, main_title="m9nmb10_data")
show_images1(data=m9nmb25_data, main_title="m9nmb25_data")
show_images1(data=m9nmb50_data, main_title="m9nmb50_data")
show_images1(data=m9nmb100_data, main_title="m9nmb100_data")
show_images1(data=m9nmb500_data, main_title="m9nmb500_data")
show_images1(data=m9nmb1000_data, main_title="m9nmb1000_data")
print()
show_images1(data=no1000m9nmb10_data, main_title="no1000m9nmb10_data")
show_images1(data=no1000m9nmb25_data, main_title="no1000m9nmb25_data")
show_images1(data=no1000m9nmb50_data, main_title="no1000m9nmb50_data")
show_images1(data=no1000m9nmb100_data, main_title="no1000m9nmb100_data")
show_images1(data=no1000m9nmb500_data, main_title="no1000m9nmb500_data")
show_images1(data=no1000m9nmb1000_data, main_title="no1000m9nmb1000_data")
print()
show_images1(data=nmb10fgray_data, main_title="nmb10fgray_data")
show_images1(data=nmb10fpurple_data, main_title="nmb10fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="nmb10_data", nmb=10)
show_images2(data=origin_data, main_title="nmb25_data", nmb=25)
show_images2(data=origin_data, main_title="nmb50_data", nmb=50)
show_images2(data=origin_data, main_title="nmb100_data", nmb=100)
show_images2(data=origin_data, main_title="nmb500_data", nmb=500)
show_images2(data=origin_data, main_title="nmb1000_data", nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000nmb10_data", no=1000,
             nmb=10)
show_images2(data=origin_data, main_title="no1000nmb25_data", no=1000,
             nmb=25)
show_images2(data=origin_data, main_title="no1000nmb50_data", no=1000,
             nmb=50)
show_images2(data=origin_data, main_title="no1000nmb100_data", no=1000,
             nmb=100)
show_images2(data=origin_data, main_title="no1000nmb500_data", no=1000, 
             nmb=500)
show_images2(data=origin_data, main_title="no1000nmb1000_data", no=1000, 
             nmb=1000)
print()
show_images2(data=origin_data, main_title="m9nmb10_data", m=9, nmb=10)
show_images2(data=origin_data, main_title="m9nmb25_data", m=9, nmb=25)
show_images2(data=origin_data, main_title="m9nmb50_data", m=9, nmb=50)
show_images2(data=origin_data, main_title="m9nmb100_data", m=9, nmb=100)
show_images2(data=origin_data, main_title="m9nmb500_data", m=9, nmb=500)
show_images2(data=origin_data, main_title="m9nmb1000_data", m=9, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m9nmb10_data", no=1000, m=9,
             nmb=10)
show_images2(data=origin_data, main_title="no1000m9nmb25_data", no=1000, m=9,
             nmb=25)
show_images2(data=origin_data, main_title="no1000m9nmb50_data", no=1000, m=9,
             nmb=50)
show_images2(data=origin_data, main_title="no1000m9nmb100_data", no=1000, m=9,
             nmb=100)
show_images2(data=origin_data, main_title="no1000m9nmb500_data", no=1000, m=9,
             nmb=500)
show_images2(data=origin_data, main_title="no1000m9nmb1000_data", no=1000, m=9,
             nmb=1000)
print()
show_images2(data=origin_data, main_title="nmb10fgray_data", nmb=10, f=150)
show_images2(data=origin_data, main_title="nmb10fpurple_data", nmb=10,
             f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

AWS GenAI LIVE image

Real challenges. Real solutions. Real talk.

From technical discussions to philosophical debates, AWS and AWS Partners examine the impact and evolution of gen AI.

Learn more

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay