DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomAdjustSharpness in PyTorch

Buy Me a Coffee

*Memos:

RandomAdjustSharpness() can randomly sharpen or blur an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is sharpness_factor(Required-Type:int or float): *Memos:
    • x < 1 gives a blurred image.
    • 1 gives an original image.
    • 1 < x gives a sharpened image.
  • The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is solarized or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAdjustSharpness

ras = RandomAdjustSharpness(sharpness_factor=100)
ras = RandomAdjustSharpness(sharpness_factor=100, p=0.5)

ras
# RandomAdjustSharpness(p=0.5, sharpness_factor=100)

ras.sharpness_factor
# 100

ras.p
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

sf1p1origin_data = OxfordIIITPet( # `sf` is sharpness_factor.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1, p=1)
)

sf2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=2, p=1)
)

sf3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=3, p=1)
)

sf4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=4, p=1)
)

sf5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=5, p=1)
)

sf10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=10, p=1)
)

sf25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=25, p=1)
)

sf50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=50, p=1)
)

sf100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=1)
)

sf1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1000, p=1)
)

sf0p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=0, p=1)
)

sfn1p1_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1, p=1)
)

sfn2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-2, p=1)
)

sfn3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-3, p=1)
)

sfn4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-4, p=1)
)

sfn5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-5, p=1)
)

sfn10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-10, p=1)
)

sfn25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-25, p=1)
)

sfn50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-50, p=1)
)

sfn100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-100, p=1)
)

sfn1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1000, p=1)
)

sf100p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0)
)

sf100p05_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0.5)
    # transform=RandomAdjustSharpness(sharpness_factor=100)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf2p1_data, main_title="sf2p1_data")
show_images1(data=sf3p1_data, main_title="sf3p1_data")
show_images1(data=sf4p1_data, main_title="sf4p1_data")
show_images1(data=sf5p1_data, main_title="sf5p1_data")
show_images1(data=sf10p1_data, main_title="sf10p1_data")
show_images1(data=sf25p1_data, main_title="sf25p1_data")
show_images1(data=sf50p1_data, main_title="sf50p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf1000p1_data, main_title="sf1000p1_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf0p1_data, main_title="sf0p1_data")
show_images1(data=sfn1p1_data, main_title="sfn1p1_data")
show_images1(data=sfn2p1_data, main_title="sfn2p1_data")
show_images1(data=sfn3p1_data, main_title="sfn3p1_data")
show_images1(data=sfn4p1_data, main_title="sfn4p1_data")
show_images1(data=sfn5p1_data, main_title="sfn5p1_data")
show_images1(data=sfn10p1_data, main_title="sfn10p1_data")
show_images1(data=sfn25p1_data, main_title="sfn25p1_data")
show_images1(data=sfn50p1_data, main_title="sfn50p1_data")
show_images1(data=sfn100p1_data, main_title="sfn100p1_data")
show_images1(data=sfn1000p1_data, main_title="sfn1000p1_data")
print()
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
print()
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
print()
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, sf=None, prob=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if sf != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rs = RandomAdjustSharpness(sharpness_factor=sf, p=prob)
            plt.imshow(X=rs(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf2p1_data", sf=2, prob=1)
show_images2(data=origin_data, main_title="sf3p1_data", sf=3, prob=1)
show_images2(data=origin_data, main_title="sf4p1_data", sf=4, prob=1)
show_images2(data=origin_data, main_title="sf5p1_data", sf=5, prob=1)
show_images2(data=origin_data, main_title="sf10p1_data", sf=10, prob=1)
show_images2(data=origin_data, main_title="sf25p1_data", sf=25, prob=1)
show_images2(data=origin_data, main_title="sf50p1_data", sf=50, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf1000p1_data", sf=1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf0p1_data", sf=0, prob=1)
show_images2(data=origin_data, main_title="sfn1p1_data", sf=-1, prob=1)
show_images2(data=origin_data, main_title="sfn2p1_data", sf=-2, prob=1)
show_images2(data=origin_data, main_title="sfn3p1_data", sf=-3, prob=1)
show_images2(data=origin_data, main_title="sfn4p1_data", sf=-4, prob=1)
show_images2(data=origin_data, main_title="sfn5p1_data", sf=-5, prob=1)
show_images2(data=origin_data, main_title="sfn10p1_data", sf=-10, prob=1)
show_images2(data=origin_data, main_title="sfn25p1_data", sf=-25, prob=1)
show_images2(data=origin_data, main_title="sfn50p1_data", sf=-50, prob=1)
show_images2(data=origin_data, main_title="sfn100p1_data", sf=-100, prob=1)
show_images2(data=origin_data, main_title="sfn1000p1_data", sf=-1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
print()
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
print()
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay