DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomAutocontrast in PyTorch

Buy Me a Coffee

*Memos:

RandomAutocontrast() can randomly autocontrast an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is inverted or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAutocontrast

rac = RandomAutocontrast()
rac = RandomAutocontrast(p=0.5)

rac
# RandomAutocontrast(p=0.5)

rac.p 
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAutocontrast(p=0)
)

p05_data = OxfordIIITPet(
    root="data",
    transform=RandomAutocontrast(p=0.5)
    # transform=RandomAutocontrast()
)

p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAutocontrast(p=1)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
print()
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
print()
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, prob=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        rac = RandomAutocontrast(p=prob)
        plt.imshow(X=rac(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
print()
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
print()
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description

Postmark Image

Speedy emails, satisfied customers

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay