DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomResizedCrop in PyTorch (5)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It's scale argument with ratio=[1, 1]:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000sc0_0r1_1origin_data = OxfordIIITPet( # `s` is size and `sc` is scale.
    root="data",                           # `r` is ratio.
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 1])
)

s1000sc0_1r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 1], ratio=[1, 1])
)

s1000sc0_05r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0.5], ratio=[1, 1])
)

s1000sc05_1r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.5, 1], ratio=[1, 1])
)

s1000sc0001_0001r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.001, 0.001],
                                ratio=[1, 1])
)

s1000sc001_001r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.01, 0.01], ratio=[1, 1])
)

s1000sc01_01r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.1, 0.1], ratio=[1, 1])
)

s1000sc02_02r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.2, 0.2], ratio=[1, 1])
)

s1000sc03_03r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.3, 0.3], ratio=[1, 1])
)

s1000sc04_04r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.4, 0.4], ratio=[1, 1])
)

s1000sc05_05r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.5, 0.5], ratio=[1, 1])
)

s1000sc06_06r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.6, 0.6], ratio=[1, 1])
)

s1000sc07_07r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.7, 0.7], ratio=[1, 1])
)

s1000sc08_08r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.8, 0.8], ratio=[1, 1])
)

s1000sc09_09r1_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.9, 0.9], ratio=[1, 1])
)

s1000sc1_1r1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[1, 1], ratio=[1, 1])
)

s1000sc10_10r1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[10, 10], ratio=[1, 1])
)

s1000sc100_100r1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[100, 100], ratio=[1, 1])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
             main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_1r1_1_data, main_title="s1000sc0_1r1_1_data")
show_images1(data=s1000sc0_05r1_1_data, main_title="s1000sc0_05r1_1_data")
show_images1(data=s1000sc05_1r1_1_data, main_title="s1000sc05_1r1_1_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
             main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0001_0001r1_1_data, 
             main_title="s1000sc0001_0001r1_1_data")
show_images1(data=s1000sc001_001r1_1_data, 
             main_title="s1000sc001_001r1_1_data")
show_images1(data=s1000sc01_01r1_1_data, main_title="s1000sc01_01r1_1_data")
show_images1(data=s1000sc02_02r1_1_data, main_title="s1000sc02_02r1_1_data")
show_images1(data=s1000sc03_03r1_1_data, main_title="s1000sc03_03r1_1_data")
show_images1(data=s1000sc04_04r1_1_data, main_title="s1000sc04_04r1_1_data")
show_images1(data=s1000sc05_05r1_1_data, main_title="s1000sc05_05r1_1_data")
show_images1(data=s1000sc06_06r1_1_data, main_title="s1000sc06_06r1_1_data")
show_images1(data=s1000sc07_07r1_1_data, main_title="s1000sc07_07r1_1_data")
show_images1(data=s1000sc08_08r1_1_data, main_title="s1000sc08_08r1_1_data")
show_images1(data=s1000sc09_09r1_1_data, main_title="s1000sc09_09r1_1_data")
show_images1(data=s1000sc1_1r1_1origin_data, 
             main_title="s1000sc1_1r1_1origin_data")
show_images1(data=s1000sc10_10r1_1origin_data,
             main_title="s1000sc10_10r1_1origin_data")
show_images1(data=s1000sc100_100r1_1origin_data,
             main_title="s1000sc100_100r1_1origin_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if s:
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rrc = RandomResizedCrop(size=s, scale=sc,
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im))
    else:
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
             s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_1r1_1_data", s=1000, 
             sc=[0, 1], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_05r1_1_data", s=1000,
             sc=[0, 0.5], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc05_1r1_1_data", s=1000,
             sc=[0.5, 1], r=[1, 1])
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data", 
             s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0001_0001r1_1_data", 
             s=1000, sc=[0.001, 0.001], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc001_001r1_1_data", 
             s=1000, sc=[0.01, 0.01], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc01_01r1_1_data", 
             s=1000, sc=[0.1, 0.1], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc02_02r1_1_data", 
             s=1000, sc=[0.2, 0.2], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc03_03r1_1_data", 
             s=1000, sc=[0.3, 0.3], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc04_04r1_1_data", 
             s=1000, sc=[0.4, 0.4], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc05_05r1_1_data", 
             s=1000, sc=[0.5, 0.5], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc06_06r1_1_data", 
             s=1000, sc=[0.6, 0.6], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc07_07r1_1_data", 
             s=1000, sc=[0.7, 0.7], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc08_08r1_1_data", 
             s=1000, sc=[0.8, 0.8], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc09_09r1_1_data", 
             s=1000, sc=[0.9, 0.9], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc1_1r1_1origin_data", 
             s=1000, sc=[1, 1], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc10_10r1_1origin_data",
             s=1000, sc=[10, 10], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc100_100r1_1origin_data",
             s=1000, sc=[100, 100], r=[1, 1])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs