*Memos:
-
My post explains RandomResizedCrop() about
size
argument. -
My post explains RandomResizedCrop() about
scale
argument. -
My post explains RandomResizedCrop() about
ratio
argument. -
My post explains RandomResizedCrop() about
size
argument withscale=[0, 0]
andratio=[1, 1]
. -
My post explains RandomResizedCrop() about
scale
argument withratio=[1, 1]
. - My post explains OxfordIIITPet().
RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It's about ratio
argument with scale=[0, 0]
:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode
origin_data = OxfordIIITPet(
root="data",
transform=None
)
s1000sc0_0r1_1origin_data = OxfordIIITPet( # `s` is size and `sc` is scale.
root="data", # `r` is ratio.
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 1])
)
s1000sc0_0r01_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 10])
)
s1000sc0_0r01_1_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 1])
)
s1000sc0_0r1_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 10])
)
s1000sc0_0r09_09_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.9, 0.9])
)
s1000sc0_0r08_08_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.8, 0.8])
)
s1000sc0_0r07_07_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.7, 0.7])
)
s1000sc0_0r06_06_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.6, 0.6])
)
s1000sc0_0r05_05_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.5, 0.5])
)
s1000sc0_0r04_04_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.4, 0.4])
)
s1000sc0_0r03_03_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.3, 0.3])
)
s1000sc0_0r02_02_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.2, 0.2])
)
s1000sc0_0r01_01_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 0.1])
)
s1000sc0_0r001_001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.01, 0.01])
)
s1000sc0_0r0001_0001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.001, 0.001])
)
s1000sc0_0r00001_00001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0],
ratio=[0.0001, 0.0001])
)
s1000sc0_0r2_2_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[2, 2])
)
s1000sc0_0r3_3_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[3, 3])
)
s1000sc0_0r4_4_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[4, 4])
)
s1000sc0_0r5_5_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[5, 5])
)
s1000sc0_0r6_6_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[6, 6])
)
s1000sc0_0r7_7_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[7, 7])
)
s1000sc0_0r8_8_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[8, 8])
)
s1000sc0_0r9_9_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[9, 9])
)
s1000sc0_0r10_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[10, 10])
)
s1000sc0_0r100_100_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[100, 100])
)
s1000sc0_0r1000_1000_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1000, 1000])
)
s1000sc0_0r10000_10000_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, scale=[0, 0],
ratio=[10000, 10000])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r01_10_data, main_title="s1000sc0_0r01_10_data")
show_images1(data=s1000sc0_0r01_1_data, main_title="s1000sc0_0r01_1_data")
show_images1(data=s1000sc0_0r1_10_data, main_title="s1000sc0_0r1_10_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r09_09_data , main_title="s1000sc0_0r09_09_data")
show_images1(data=s1000sc0_0r08_08_data, main_title="s1000sc0_0r08_08_data")
show_images1(data=s1000sc0_0r07_07_data, main_title="s1000sc0_0r07_07_data")
show_images1(data=s1000sc0_0r06_06_data, main_title="s1000sc0_0r06_06_data")
show_images1(data=s1000sc0_0r05_05_data, main_title="s1000sc0_0r05_05_data")
show_images1(data=s1000sc0_0r04_04_data, main_title="s1000sc0_0r04_04_data")
show_images1(data=s1000sc0_0r03_03_data, main_title="s1000sc0_0r03_03_data")
show_images1(data=s1000sc0_0r02_02_data, main_title="s1000sc0_0r02_02_data")
show_images1(data=s1000sc0_0r01_01_data, main_title="s1000sc0_0r01_01_data")
show_images1(data=s1000sc0_0r001_001_data,
main_title="s1000sc0_0r001_001_data")
show_images1(data=s1000sc0_0r0001_0001_data,
main_title="s1000sc0_0r0001_0001_data")
show_images1(data=s1000sc0_0r00001_00001_data,
main_title="s1000sc0_0r00001_00001_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r2_2_data, main_title="s1000sc0_0r2_2_data")
show_images1(data=s1000sc0_0r3_3_data, main_title="s1000sc0_0r3_3_data")
show_images1(data=s1000sc0_0r4_4_data, main_title="s1000sc0_0r4_4_data")
show_images1(data=s1000sc0_0r5_5_data, main_title="s1000sc0_0r5_5_data")
show_images1(data=s1000sc0_0r6_6_data, main_title="s1000sc0_0r6_6_data")
show_images1(data=s1000sc0_0r7_7_data, main_title="s1000sc0_0r7_7_data")
show_images1(data=s1000sc0_0r8_8_data, main_title="s1000sc0_0r8_8_data")
show_images1(data=s1000sc0_0r9_9_data, main_title="s1000sc0_0r9_9_data")
show_images1(data=s1000sc0_0r10_10_data, main_title="s1000sc0_0r10_10_data")
show_images1(data=s1000sc0_0r100_100_data,
main_title="s1000sc0_0r100_100_data")
show_images1(data=s1000sc0_0r1000_1000_data,
main_title="s1000sc0_0r1000_1000_data")
show_images1(data=s1000sc0_0r10000_10000_data,
main_title="s1000sc0_0r10000_10000_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
r=(0.75, 1.3333333333333333),
ip=InterpolationMode.BILINEAR, a=True):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if s:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rrc = RandomResizedCrop(size=s, scale=sc,
ratio=r, interpolation=ip,
antialias=a)
plt.imshow(X=rrc(im))
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r01_10_data", s=1000,
sc=[0, 0], r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000sc0_0r01_1_data", s=1000,
sc=[0, 0], r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r1_10_data", s=1000,
sc=[0, 0], r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r09_09_data", s=1000,
sc=[0, 0], r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000sc0_0r08_08_data", s=1000,
sc=[0, 0], r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000sc0_0r07_07_data", s=1000,
sc=[0, 0], r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000sc0_0r06_06_data", s=1000,
sc=[0, 0], r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000sc0_0r05_05_data", s=1000,
sc=[0, 0], r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000sc0_0r04_04_data", s=1000,
sc=[0, 0], r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000sc0_0r03_03_data", s=1000,
sc=[0, 0], r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000sc0_0r02_02_data", s=1000,
sc=[0, 0], r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000sc0_0r01_01_data", s=1000,
sc=[0, 0], r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000sc0_0r001_001_data", s=1000,
sc=[0, 0], r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000sc0_0r0001_0001_data", s=1000,
sc=[0, 0], r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000sc0_0r00001_00001_data",
s=1000, sc=[0, 0], r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r2_2_data", s=1000,
sc=[0, 0], r=[2, 2])
show_images2(data=origin_data, main_title="s1000sc0_0r3_3_data", s=1000,
sc=[0, 0], r=[3, 3])
show_images2(data=origin_data, main_title="s1000sc0_0r4_4_data", s=1000,
sc=[0, 0], r=[4, 4])
show_images2(data=origin_data, main_title="s1000sc0_0r5_5_data", s=1000,
sc=[0, 0], r=[5, 5])
show_images2(data=origin_data, main_title="s1000sc0_0r6_6_data", s=1000,
sc=[0, 0], r=[6, 6])
show_images2(data=origin_data, main_title="s1000sc0_0r7_7_data", s=1000,
sc=[0, 0], r=[7, 7])
show_images2(data=origin_data, main_title="s1000sc0_0r8_8_data", s=1000,
sc=[0, 0], r=[8, 8])
show_images2(data=origin_data, main_title="s1000sc0_0r9_9_data", s=1000,
sc=[0, 0], r=[9, 9])
show_images2(data=origin_data, main_title="s1000sc0_0r10_10_data", s=1000,
sc=[0, 0], r=[10, 10])
show_images2(data=origin_data, main_title="s1000sc0_0r100_100_data", s=1000,
sc=[0, 0], r=[100, 100])
show_images2(data=origin_data, main_title="s1000sc0_0r1000_1000_data", s=1000,
sc=[0, 0], r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000sc0_0r10000_10000_data",
s=1000, sc=[0, 0], r=[10000, 10000])
Top comments (0)