DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomResizedCrop in PyTorch (6)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It's about ratio argument with scale=[0, 0]:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000sc0_0r1_1origin_data = OxfordIIITPet( # `s` is size and `sc` is scale.
    root="data",                           # `r` is ratio.
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 1])
)

s1000sc0_0r01_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 10])
)

s1000sc0_0r01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 1])
)

s1000sc0_0r1_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 10])
)

s1000sc0_0r09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.9, 0.9])
)

s1000sc0_0r08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.8, 0.8])
)

s1000sc0_0r07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.7, 0.7])
)

s1000sc0_0r06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.6, 0.6])
)

s1000sc0_0r05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.5, 0.5])
)

s1000sc0_0r04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.4, 0.4])
)

s1000sc0_0r03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.3, 0.3])
)

s1000sc0_0r02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.2, 0.2])
)

s1000sc0_0r01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.1, 0.1])
)

s1000sc0_0r001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.01, 0.01])
)

s1000sc0_0r0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[0.001, 0.001])
)

s1000sc0_0r00001_00001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0],
                                ratio=[0.0001, 0.0001])
)

s1000sc0_0r2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[2, 2])
)

s1000sc0_0r3_3_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[3, 3])
)

s1000sc0_0r4_4_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[4, 4])
)

s1000sc0_0r5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[5, 5])
)

s1000sc0_0r6_6_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[6, 6])
)

s1000sc0_0r7_7_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[7, 7])
)

s1000sc0_0r8_8_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[8, 8])
)

s1000sc0_0r9_9_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[9, 9])
)

s1000sc0_0r10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[10, 10])
)

s1000sc0_0r100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[100, 100])
)

s1000sc0_0r1000_1000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1000, 1000])
)

s1000sc0_0r10000_10000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0],
                                ratio=[10000, 10000])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data,
             main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r01_10_data, main_title="s1000sc0_0r01_10_data")
show_images1(data=s1000sc0_0r01_1_data, main_title="s1000sc0_0r01_1_data")
show_images1(data=s1000sc0_0r1_10_data, main_title="s1000sc0_0r1_10_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data, 
             main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r09_09_data , main_title="s1000sc0_0r09_09_data")
show_images1(data=s1000sc0_0r08_08_data, main_title="s1000sc0_0r08_08_data")
show_images1(data=s1000sc0_0r07_07_data, main_title="s1000sc0_0r07_07_data")
show_images1(data=s1000sc0_0r06_06_data, main_title="s1000sc0_0r06_06_data")
show_images1(data=s1000sc0_0r05_05_data, main_title="s1000sc0_0r05_05_data")
show_images1(data=s1000sc0_0r04_04_data, main_title="s1000sc0_0r04_04_data")
show_images1(data=s1000sc0_0r03_03_data, main_title="s1000sc0_0r03_03_data")
show_images1(data=s1000sc0_0r02_02_data, main_title="s1000sc0_0r02_02_data")
show_images1(data=s1000sc0_0r01_01_data, main_title="s1000sc0_0r01_01_data")
show_images1(data=s1000sc0_0r001_001_data, 
             main_title="s1000sc0_0r001_001_data")
show_images1(data=s1000sc0_0r0001_0001_data, 
             main_title="s1000sc0_0r0001_0001_data")
show_images1(data=s1000sc0_0r00001_00001_data,
             main_title="s1000sc0_0r00001_00001_data")
print()
show_images1(data=s1000sc0_0r1_1origin_data, 
             main_title="s1000sc0_0r1_1origin_data")
show_images1(data=s1000sc0_0r2_2_data, main_title="s1000sc0_0r2_2_data")
show_images1(data=s1000sc0_0r3_3_data, main_title="s1000sc0_0r3_3_data")
show_images1(data=s1000sc0_0r4_4_data, main_title="s1000sc0_0r4_4_data")
show_images1(data=s1000sc0_0r5_5_data, main_title="s1000sc0_0r5_5_data")
show_images1(data=s1000sc0_0r6_6_data, main_title="s1000sc0_0r6_6_data")
show_images1(data=s1000sc0_0r7_7_data, main_title="s1000sc0_0r7_7_data")
show_images1(data=s1000sc0_0r8_8_data, main_title="s1000sc0_0r8_8_data")
show_images1(data=s1000sc0_0r9_9_data, main_title="s1000sc0_0r9_9_data")
show_images1(data=s1000sc0_0r10_10_data, main_title="s1000sc0_0r10_10_data")
show_images1(data=s1000sc0_0r100_100_data, 
             main_title="s1000sc0_0r100_100_data")
show_images1(data=s1000sc0_0r1000_1000_data, 
             main_title="s1000sc0_0r1000_1000_data")
show_images1(data=s1000sc0_0r10000_10000_data,
             main_title="s1000sc0_0r10000_10000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if s:
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rrc = RandomResizedCrop(size=s, scale=sc,
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im))
    else:
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
             s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r01_10_data", s=1000, 
             sc=[0, 0], r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000sc0_0r01_1_data", s=1000,
             sc=[0, 0], r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r1_10_data", s=1000, 
             sc=[0, 0], r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data", 
             s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r09_09_data", s=1000,
             sc=[0, 0], r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000sc0_0r08_08_data", s=1000,
             sc=[0, 0], r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000sc0_0r07_07_data", s=1000,
             sc=[0, 0], r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000sc0_0r06_06_data", s=1000,
             sc=[0, 0], r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000sc0_0r05_05_data", s=1000,
             sc=[0, 0], r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000sc0_0r04_04_data", s=1000,
             sc=[0, 0], r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000sc0_0r03_03_data", s=1000,
             sc=[0, 0], r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000sc0_0r02_02_data", s=1000,
             sc=[0, 0], r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000sc0_0r01_01_data", s=1000,
             sc=[0, 0], r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000sc0_0r001_001_data", s=1000,
             sc=[0, 0], r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000sc0_0r0001_0001_data", s=1000,
             sc=[0, 0], r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000sc0_0r00001_00001_data", 
             s=1000, sc=[0, 0], r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data", 
             s=1000, sc=[0, 0], r=[1, 1])
show_images2(data=origin_data, main_title="s1000sc0_0r2_2_data", s=1000,
             sc=[0, 0], r=[2, 2])
show_images2(data=origin_data, main_title="s1000sc0_0r3_3_data", s=1000, 
             sc=[0, 0], r=[3, 3])
show_images2(data=origin_data, main_title="s1000sc0_0r4_4_data", s=1000, 
             sc=[0, 0], r=[4, 4])
show_images2(data=origin_data, main_title="s1000sc0_0r5_5_data", s=1000, 
             sc=[0, 0], r=[5, 5])
show_images2(data=origin_data, main_title="s1000sc0_0r6_6_data", s=1000, 
             sc=[0, 0], r=[6, 6])
show_images2(data=origin_data, main_title="s1000sc0_0r7_7_data", s=1000, 
             sc=[0, 0], r=[7, 7])
show_images2(data=origin_data, main_title="s1000sc0_0r8_8_data", s=1000, 
             sc=[0, 0], r=[8, 8])
show_images2(data=origin_data, main_title="s1000sc0_0r9_9_data", s=1000, 
             sc=[0, 0], r=[9, 9])
show_images2(data=origin_data, main_title="s1000sc0_0r10_10_data", s=1000,
             sc=[0, 0], r=[10, 10])
show_images2(data=origin_data, main_title="s1000sc0_0r100_100_data", s=1000,
             sc=[0, 0], r=[100, 100])
show_images2(data=origin_data, main_title="s1000sc0_0r1000_1000_data", s=1000,
             sc=[0, 0], r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000sc0_0r10000_10000_data", 
             s=1000, sc=[0, 0], r=[10000, 10000])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more