DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

TrivialAugmentWide in PyTorch

Buy Me a Coffee

*Memos:

TrivialAugmentWide() can randomly trivial-augment an image as shown below:

*Memos:

  • The 1st argument for initialization is num_magnitude_bins(Optional-Default:31-Type:int). *It must be 1 <= x.
  • The 2nd argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode). *If the input is a tensor, only InterpolationMode.NEAREST, InterpolationMode.BILINEAR can be set to it.
  • The 3rd argument for initialization is fill(Optional-Default:None-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when trivial-augmenting an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
    • If all values are 255 <= x, it's white.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import TrivialAugmentWide
from torchvision.transforms.functional import InterpolationMode

taw = TrivialAugmentWide()
taw = TrivialAugmentWide(num_magnitude_bins = 31,
                         interpolation = InterpolationMode.NEAREST, 
                         fill= None)
taw
# TrivialAugmentWide(interpolation=InterpolationMode.NEAREST,
#                    num_magnitude_bins=31)

taw.num_magnitude_bins
# 31

taw.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

print(taw.fill)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

nmb1_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=1)
)

nmb2_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=2)
)

nmb5_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=5)
)

nmb10_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=10)
)

nmb25_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=25)
)

nmb50_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=50)
)

nmb100_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=100)
)

nmb500_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=500)
)

nmb1000_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=1000)
)

nmb10fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=10, fill=150)
    # transform=TrivialAugmentWide(num_magnitude_bins=10, fill=[150])
)

nmb10fpurple_data = OxfordIIITPet(
    root="data",
    transform=TrivialAugmentWide(num_magnitude_bins=10, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=nmb1_data, main_title="nmb1_data")
show_images1(data=nmb2_data, main_title="nmb2_data")
show_images1(data=nmb5_data, main_title="nmb5_data")
show_images1(data=nmb10_data, main_title="nmb10_data")
show_images1(data=nmb25_data, main_title="nmb25_data")
show_images1(data=nmb50_data, main_title="nmb50_data")
show_images1(data=nmb100_data, main_title="nmb100_data")
show_images1(data=nmb500_data, main_title="nmb500_data")
show_images1(data=nmb1000_data, main_title="nmb1000_data")
print()
show_images1(data=nmb10fgray_data, main_title="nmb10fgray_data")
show_images1(data=nmb10fpurple_data, main_title="nmb10fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = TrivialAugmentWide(num_magnitude_bins=nmb,
                                    interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="nmb1_data", nmb=1)
show_images2(data=origin_data, main_title="nmb2_data", nmb=2)
show_images2(data=origin_data, main_title="nmb5_data", nmb=5)
show_images2(data=origin_data, main_title="nmb10_data", nmb=10)
show_images2(data=origin_data, main_title="nmb25_data", nmb=25)
show_images2(data=origin_data, main_title="nmb50_data", nmb=50)
show_images2(data=origin_data, main_title="nmb100_data", nmb=100)
show_images2(data=origin_data, main_title="nmb500_data", nmb=500)
show_images2(data=origin_data, main_title="nmb1000_data", nmb=1000)
print()
show_images2(data=origin_data, main_title="nmb10fgray_data", nmb=10, f=150)
show_images2(data=origin_data, main_title="nmb10fpurple_data", nmb=10,
             f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Hostinger image

Get n8n VPS hosting 3x cheaper than a cloud solution

Get fast, easy, secure n8n VPS hosting from $4.99/mo at Hostinger. Automate any workflow using a pre-installed n8n application and no-code customization.

Start now

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay