DEV Community

Discussion on: Github: A High-Performance Library for Audio Analysis

Collapse
 
audioflux profile image
van

To install the audioFlux package, Python >=3.6, using the released python package.Using PyPI:
pip install audioflux

Mel & MFCC demo

import numpy as np
import audioflux as af

import matplotlib.pyplot as plt
from audioflux.display import fill_spec

# Get a 220Hz's audio file path
sample_path = af.utils.sample_path('220')

# Read audio data and sample rate
audio_arr, sr = af.read(sample_path)

# Extract mel spectrogram
spec_arr, mel_fre_band_arr = af.mel_spectrogram(audio_arr, num=128, radix2_exp=12, samplate=sr)
spec_arr = np.abs(spec_arr)

# Extract mfcc
mfcc_arr, _ = af.mfcc(audio_arr, cc_num=13, mel_num=128, radix2_exp=12, samplate=sr)

# Display
audio_len = audio_arr.shape[-1]
# calculate x/y-coords
x_coords = np.linspace(0, audio_len / sr, spec_arr.shape[-1] + 1)
y_coords = np.insert(mel_fre_band_arr, 0, 0)
fig, ax = plt.subplots()
img = fill_spec(spec_arr, axes=ax,
                x_coords=x_coords, y_coords=y_coords,
                x_axis='time', y_axis='log',
                title='Mel Spectrogram')
fig.colorbar(img, ax=ax)

fig, ax = plt.subplots()
img = fill_spec(mfcc_arr, axes=ax,
                x_coords=x_coords, x_axis='time',
                title='MFCC')
fig.colorbar(img, ax=ax)

plt.show()
Enter fullscreen mode Exit fullscreen mode

mel-mfcc