DEV Community

DEV-AI
DEV-AI

Posted on

LLM Approach for building Text-to-SQL Agent : A Comprehensive Guide for Enterprise Implementation

Natural language to SQL (Text-to-SQL) systems are transforming how organizations interact with databases by enabling non-technical users to query data using plain English. While academic research focuses on maximizing accuracy on benchmark datasets, production implementations require balancing accuracy, performance, security, and scalability. This article bridges that gap by presenting practical approaches, real-world use cases, and implementation strategies for deploying Text-to-SQL systems in enterprise environments.[1][2][3][4]

Real-World Use Cases

Business Intelligence and Analytics

Text-to-SQL systems democratize data access across organizations, enabling business users to generate insights without waiting for data analysts. A global consumer packaged goods (CPG) company integrated Text-to-SQL into their product analytics dashboard, reducing the time product managers spent waiting for data from 2-3 days to under 30 seconds. This resulted in a 40% reduction in data waiting time and a 15% increase in speed to market for product features.[2]

Marketing Campaign Optimization: Marketing teams can quickly explore customer segments, campaign ROI, and regional trends without depending on the data team. Common queries include:[2]

  • "What was the conversion rate for email campaigns in Q4 by region?"
  • "Show me customer acquisition cost trends for the last 6 months"
  • "Which customer segments have the highest lifetime value?"

Customer Support Monitoring: Support leaders can access metrics like ticket resolution time or satisfaction scores instantly. Example queries:[2]

  • "Average resolution time for high-priority tickets this week"
  • "Top 5 product issues by ticket volume last month"
  • "Customer satisfaction scores by support agent"

Financial Services and Analytics

A leading insurance firm empowered its FP&A teams with a self-service Text-to-SQL tool, enabling analysts to ask questions like "Show last quarter's claim payouts by region and claim type" directly within their dashboards. This reduced the volume of ad-hoc data requests to the business intelligence team by over 50%, freeing analysts to focus on strategic forecasting.[2]

Financial queries:

  • "Calculate total revenue by product category for the fiscal year"
  • "Show monthly recurring revenue growth rate"
  • "Identify customers whose payment is overdue by more than 30 days"

E-commerce Analytics

Text-to-SQL systems enable e-commerce businesses to analyze customer behavior, inventory, and sales performance in real-time. Example applications:[5]

  • "Which customers from California made purchases over $500 last month?"[5]
  • "Show inventory turnover rate by product category"
  • "Identify products with declining sales trends in the past quarter"

Production-Ready Architecture

Unlike academic research implementations that focus solely on SQL generation accuracy, production systems require a robust multi-stage pipeline that handles intent routing, security validation, error recovery, and performance optimization.[6][7]

Multi-Stage Pipeline Architecture

Stage 1: Intent Router

Not every user input requires SQL generation. The intent router classifies queries into categories:[6]

  • Schema exploration ("What tables are available?", "Show me column names")
  • Data retrieval (requires SQL generation)
  • Clarification requests ("Can you explain the last result?")
  • Out-of-scope queries (unrelated to database)
class IntentRouter:
    def __init__(self, llm_client):
        self.llm = llm_client

    def classify_intent(self, user_query):
        prompt = f"""
        Classify the following user query into one of these categories:
        - schema_exploration: User wants to know about database structure
        - data_retrieval: User wants to query data
        - clarification: User is asking about previous results
        - out_of_scope: Query is not related to database

        User query: {user_query}

        Return only the category name.
        """

        intent = self.llm.generate(prompt, temperature=0)
        return intent.strip().lower()
Enter fullscreen mode Exit fullscreen mode

Stage 2: Schema Linking with Vector Search

For large databases with hundreds of tables and thousands of columns, passing the entire schema to the LLM causes context overflow and reduces accuracy. Schema linking uses vector embeddings to identify only relevant schema elements:[4][6]

class SchemaLinker:
    def __init__(self, db_metadata, embedding_model):
        self.db_metadata = db_metadata
        self.embeddings = embedding_model
        self.schema_index = self._build_schema_index()

    def _build_schema_index(self):
        """Create vector embeddings for all tables and columns"""
        schema_elements = []

        for table in self.db_metadata['tables']:
            # Table-level embedding
            table_desc = f"{table['name']}: {table['description']}"
            schema_elements.append({
                'type': 'table',
                'name': table['name'],
                'text': table_desc,
                'embedding': self.embeddings.encode(table_desc)
            })

            # Column-level embeddings
            for col in table['columns']:
                col_desc = f"{table['name']}.{col['name']}: {col['description']} ({col['data_type']})"
                schema_elements.append({
                    'type': 'column',
                    'name': f"{table['name']}.{col['name']}",
                    'text': col_desc,
                    'embedding': self.embeddings.encode(col_desc)
                })

        return schema_elements

    def find_relevant_schema(self, user_query, top_k=10):
        """Retrieve top-k relevant tables and columns"""
        query_embedding = self.embeddings.encode(user_query)

        similarities = []
        for element in self.schema_index:
            similarity = cosine_similarity(query_embedding, element['embedding'])
            similarities.append((element, similarity))

        # Sort by similarity and return top-k
        similarities.sort(key=lambda x: x[1], reverse=True)
        relevant_elements = [elem for elem, score in similarities[:top_k]]

        # Group by tables
        relevant_tables = set()
        relevant_columns = []

        for elem in relevant_elements:
            if elem['type'] == 'table':
                relevant_tables.add(elem['name'])
            elif elem['type'] == 'column':
                table_name = elem['name'].split('.')[0]
                relevant_tables.add(table_name)
                relevant_columns.append(elem['name'])

        return {
            'tables': list(relevant_tables),
            'columns': relevant_columns
        }
Enter fullscreen mode Exit fullscreen mode

This dramatically improves accuracy and reduces prompt size.[6]

Stage 3: Few-Shot Example Selection

Retrieve similar historical queries from a vector database to provide contextual examples:

class ExampleRetriever:
    def __init__(self, vector_db, embedding_model):
        self.vector_db = vector_db
        self.embeddings = embedding_model

    def retrieve_similar_examples(self, user_query, relevant_tables, k=5):
        """Fetch similar question-SQL pairs"""
        query_embedding = self.embeddings.encode(user_query)

        # Search with table filtering for domain-specific examples
        examples = self.vector_db.similarity_search(
            query_vector=query_embedding,
            top_k=k,
            filters={'tables': {'$in': relevant_tables}}
        )

        return examples
Enter fullscreen mode Exit fullscreen mode

Stage 4: SQL Generation with LLM

Generate SQL using a carefully engineered prompt with relevant schema and examples:

class SQLGenerator:
    def __init__(self, llm_client, db_dialect='postgresql'):
        self.llm = llm_client
        self.dialect = db_dialect

    def generate_sql(self, user_query, schema_context, examples):
        prompt = self._build_prompt(user_query, schema_context, examples)

        sql = self.llm.generate(
            prompt,
            temperature=0.1,  # Low temperature for deterministic output
            max_tokens=500
        )

        return self._extract_sql(sql)

    def _build_prompt(self, query, schema, examples):
        return f"""
You are an expert {self.dialect} SQL generator.

DATABASE SCHEMA:
{self._format_schema(schema)}

EXAMPLES OF SIMILAR QUERIES:
{self._format_examples(examples)}

RULES:
1. Generate only valid {self.dialect} SQL
2. Use explicit JOIN syntax (INNER JOIN, LEFT JOIN)
3. Use table aliases for readability
4. Include LIMIT clause for safety (default 100)
5. All non-aggregated columns must be in GROUP BY

USER QUESTION: {query}

Generate SQL query:
Enter fullscreen mode Exit fullscreen mode

"""

def _extract_sql(self, llm_response):
    """Extract SQL from LLM response (handle markdown, etc.)"""
    import re

    # Look for SQL between
Enter fullscreen mode Exit fullscreen mode


sql markers
pattern = r'

        match = re.search(pattern, llm_response, re.DOTALL)

        if match:
            return match.group(1).strip()

        # Fallback: return entire response
        return llm_response.strip()
Enter fullscreen mode Exit fullscreen mode

Stage 5: SQL Validation and Security

Before execution, validate SQL for syntax, security, and business rules:[8][6]

class SQLValidator:
    def __init__(self, db_connection):
        self.db = db_connection
        self.forbidden_keywords = [
            'DROP', 'DELETE', 'UPDATE', 'INSERT', 'TRUNCATE',
            'ALTER', 'CREATE', 'GRANT', 'REVOKE'
        ]

    def validate(self, sql):
        """Multi-layer validation"""

        # 1. Security check - prevent destructive operations
        sql_upper = sql.upper()
        for keyword in self.forbidden_keywords:
            if keyword in sql_upper:
                return {
                    'valid': False,
                    'error': f"Forbidden operation: {keyword}",
                    'type': 'security'
                }

        # 2. Syntax validation using EXPLAIN
        try:
            self.db.execute(f"EXPLAIN {sql}")
        except Exception as e:
            return {
                'valid': False,
                'error': str(e),
                'type': 'syntax'
            }

        # 3. Business rules validation
        validation_result = self._check_business_rules(sql)
        if not validation_result['valid']:
            return validation_result

        return {'valid': True}

    def _check_business_rules(self, sql):
        """Custom business logic validation"""
        # Example: Require date filters on partitioned tables
        if 'large_orders_table' in sql.lower():
            if 'order_date' not in sql.lower():
                return {
                    'valid': False,
                    'error': "Query on large_orders_table must include order_date filter",
                    'type': 'business_rule'
                }

        return {'valid': True}
Enter fullscreen mode Exit fullscreen mode

Stage 6: Query Execution with Error Recovery

Execute SQL with automatic retry and self-correction:

class QueryExecutor:
    def __init__(self, db_connection, sql_generator, validator, max_retries=3):
        self.db = db_connection
        self.sql_generator = sql_generator
        self.validator = validator
        self.max_retries = max_retries

    def execute_with_retry(self, user_query, schema_context, examples):
        """Execute SQL with automatic error correction"""

        for attempt in range(self.max_retries):
            # Generate SQL
            sql = self.sql_generator.generate_sql(user_query, schema_context, examples)

            # Validate
            validation = self.validator.validate(sql)
            if not validation['valid']:
                if validation['type'] == 'security':
                    # Don't retry security violations
                    return {
                        'success': False,
                        'error': validation['error'],
                        'sql': sql
                    }

                # Add error feedback to prompt for correction
                schema_context['error_feedback'] = validation['error']
                continue

            # Execute
            try:
                results = self.db.execute(sql)
                return {
                    'success': True,
                    'sql': sql,
                    'results': results,
                    'row_count': len(results),
                    'attempts': attempt + 1
                }

            except Exception as e:
                # Add execution error to context for retry
                schema_context['error_feedback'] = str(e)

        return {
            'success': False,
            'error': 'Failed after maximum retries',
            'last_sql': sql
        }
Enter fullscreen mode Exit fullscreen mode

Stage 7: Natural Language Response Generation

Convert query results to user-friendly natural language responses:[3]

class ResponseGenerator:
    def __init__(self, llm_client):
        self.llm = llm_client

    def generate_response(self, user_query, sql, results):
        """Generate natural language response from SQL results"""

        # Handle empty results
        if not results:
            return "No data found matching your query."

        # For large result sets, summarize
        if len(results) > 10:
            summary_prompt = f"""
Given the user's question and query results, generate a natural language summary.

User Question: {user_query}

SQL Query: {sql}

Results (showing first 10 of {len(results)} rows):
{self._format_results(results[:10])}

Generate a concise summary that:
1. Directly answers the user's question
2. Highlights key insights or patterns
3. Mentions total row count if relevant

Summary:
"""
            return self.llm.generate(summary_prompt, temperature=0.3)

        else:
            # For small result sets, format as table or list
            return self._format_results_as_text(results)

    def _format_results(self, results):
        """Convert results to readable format"""
        if not results:
            return "No results"

        # Get column names
        columns = list(results[0].keys())

        # Create formatted table
        output = " | ".join(columns) + "\n"
        output += "-" * len(output) + "\n"

        for row in results:
            output += " | ".join(str(row[col]) for col in columns) + "\n"

        return output
Enter fullscreen mode Exit fullscreen mode

Complete Pipeline Integration

class Text2SQLPipeline:
    def __init__(self, llm_client, db_connection, db_metadata, vector_db):
        self.intent_router = IntentRouter(llm_client)
        self.schema_linker = SchemaLinker(db_metadata, SentenceTransformer())
        self.example_retriever = ExampleRetriever(vector_db, SentenceTransformer())
        self.sql_generator = SQLGenerator(llm_client)
        self.validator = SQLValidator(db_connection)
        self.executor = QueryExecutor(db_connection, self.sql_generator, self.validator)
        self.response_generator = ResponseGenerator(llm_client)

        # Caching for performance
        self.query_cache = {}

    def process_query(self, user_query):
        """End-to-end query processing"""

        # Check cache first
        cache_key = hashlib.md5(user_query.encode()).hexdigest()
        if cache_key in self.query_cache:
            return self.query_cache[cache_key]

        # Stage 1: Intent routing
        intent = self.intent_router.classify_intent(user_query)

        if intent == 'out_of_scope':
            return {
                'response': "I can only answer questions about the database. Please ask a data-related question."
            }

        if intent == 'schema_exploration':
            return self._handle_schema_exploration(user_query)

        # Stage 2: Schema linking
        schema_context = self.schema_linker.find_relevant_schema(user_query)

        # Stage 3: Example retrieval
        examples = self.example_retriever.retrieve_similar_examples(
            user_query,
            schema_context['tables']
        )

        # Stage 4-6: SQL generation, validation, and execution
        execution_result = self.executor.execute_with_retry(
            user_query,
            schema_context,
            examples
        )

        if not execution_result['success']:
            return {
                'response': f"I encountered an error: {execution_result['error']}",
                'sql': execution_result.get('last_sql')
            }

        # Stage 7: Generate natural language response
        nl_response = self.response_generator.generate_response(
            user_query,
            execution_result['sql'],
            execution_result['results']
        )

        result = {
            'response': nl_response,
            'sql': execution_result['sql'],
            'results': execution_result['results'],
            'row_count': execution_result['row_count']
        }

        # Cache successful result
        self.query_cache[cache_key] = result

        return result
Enter fullscreen mode Exit fullscreen mode

Performance Optimization Strategies

Partition-Aware Query Generation

For large production databases with partitioned tables, always include partition filters to avoid full table scans:[9][10]

def add_partition_awareness(prompt_template, db_metadata):
    """Enhance prompt with partition information"""

    partition_guidance = """
CRITICAL: This database uses date-based partitioning for performance.

PARTITIONED TABLES:
"""

    for table in db_metadata['tables']:
        if table.get('partition_column'):
            partition_guidance += f"""
- {table['name']}: Partitioned by {table['partition_column']} (format: {table['partition_format']})
  ⚡ ALWAYS include WHERE {table['partition_column']} >= 'YYYYMMDD' filter
  ⚡ For "recent/latest": Use last 7 days
  ⚡ For "yesterday": Use specific date
"""

    partition_guidance += """
Example with partition filter:
Enter fullscreen mode Exit fullscreen mode

SELECT customer_name, SUM(order_amount) as total
FROM orders
WHERE order_date >= '20251223' -- Partition filter (last 7 days)
AND status = 'completed'
GROUP BY customer_name


⚠️ Queries without partition filters on large tables may timeout or be rejected.
"""

    return prompt_template + "\n" + partition_guidance
Enter fullscreen mode Exit fullscreen mode

One production implementation reduced query execution time from 45 seconds to 1.2 seconds (37x improvement) using partition filters.[10][9]

Query Result Caching

Implement multi-layer caching to reduce redundant LLM calls and database queries:

class CachingLayer:
    def __init__(self, redis_client, ttl=3600):
        self.redis = redis_client
        self.ttl = ttl

    def get_cached_result(self, user_query):
        """Check cache for similar queries"""
        # Normalize query
        normalized = self._normalize_query(user_query)

        cache_key = f"query:{hashlib.sha256(normalized.encode()).hexdigest()}"
        cached = self.redis.get(cache_key)

        if cached:
            return json.loads(cached)

        return None

    def cache_result(self, user_query, sql, results):
        """Store result in cache"""
        normalized = self._normalize_query(user_query)
        cache_key = f"query:{hashlib.sha256(normalized.encode()).hexdigest()}"

        cache_data = {
            'sql': sql,
            'results': results[:100],  # Limit cached result size
            'timestamp': time.time()
        }

        self.redis.setex(
            cache_key,
            self.ttl,
            json.dumps(cache_data)
        )

    def _normalize_query(self, query):
        """Normalize query for better cache hits"""
        # Convert to lowercase, remove extra whitespace
        normalized = ' '.join(query.lower().split())
        # Remove common variations
        normalized = normalized.replace('show me', 'show')
        normalized = normalized.replace('give me', 'show')
        return normalized
Enter fullscreen mode Exit fullscreen mode

Security Best Practices

Access Control and Permissions

Implement role-based access control (RBAC) to restrict database access:[11]

class AccessControlLayer:
    def __init__(self, db_connection):
        self.db = db_connection
        self.role_permissions = self._load_role_permissions()

    def _load_role_permissions(self):
        """Define table/column access by role"""
        return {
            'analyst': {
                'allowed_tables': ['orders', 'customers', 'products'],
                'forbidden_columns': ['ssn', 'credit_card'],
                'row_level_filters': {}
            },
            'manager': {
                'allowed_tables': ['orders', 'customers', 'products', 'employees'],
                'forbidden_columns': ['ssn'],
                'row_level_filters': {}
            },
            'executive': {
                'allowed_tables': '*',  # All tables
                'forbidden_columns': ['ssn', 'password_hash'],
                'row_level_filters': {}
            }
        }

    def enforce_access_control(self, user_role, sql):
        """Validate and modify SQL based on user permissions"""
        permissions = self.role_permissions.get(user_role, {})

        # Extract tables from SQL
        tables = self._extract_tables(sql)

        # Check table access
        if permissions['allowed_tables'] != '*':
            for table in tables:
                if table not in permissions['allowed_tables']:
                    raise PermissionError(f"Access denied to table: {table}")

        # Check column access
        columns = self._extract_columns(sql)
        for column in columns:
            if column in permissions['forbidden_columns']:
                raise PermissionError(f"Access denied to column: {column}")

        # Apply row-level filters if needed
        if permissions.get('row_level_filters'):
            sql = self._apply_row_filters(sql, permissions['row_level_filters'])

        return sql
Enter fullscreen mode Exit fullscreen mode

Query Sanitization

Prevent SQL injection and malicious queries:[12][11]

def sanitize_sql(sql):
    """Basic SQL sanitization"""

    dangerous_patterns = [
        r';.*DROP',
        r';.*DELETE',
        r'--.*',  # SQL comments
        r'/\*.*\*/',  # Block comments
        r'xp_cmdshell',  # SQL Server command execution
        r'EXEC\s+\(',  # Dynamic SQL execution
    ]

    sql_upper = sql.upper()

    for pattern in dangerous_patterns:
        if re.search(pattern, sql_upper):
            raise SecurityError(f"Potentially malicious SQL pattern detected")

    return sql
Enter fullscreen mode Exit fullscreen mode

Prompt Injection Defense

Protect against prompt injection attacks []:

def detect_prompt_injection(user_query):
    """Detect attempts to manipulate the LLM prompt"""

    injection_patterns = [
        r'ignore previous',
        r'disregard.*instructions',
        r'system.*prompt',
        r'<\|.*\|>',  # Special tokens
        r'```



```',  # Code blocks in input
    ]

    query_lower = user_query.lower()

    for pattern in injection_patterns:
        if re.search(pattern, query_lower):
            return True

    return False
Enter fullscreen mode Exit fullscreen mode

Monitoring and Observability

Track system performance and accuracy in production:

class QueryLogger:
    def __init__(self, logger, metrics_client):
        self.logger = logger
        self.metrics = metrics_client

    def log_query(self, user_query, sql, execution_time, success, error=None):
        """Log query execution details"""

        log_entry = {
            'timestamp': datetime.utcnow().isoformat(),
            'user_query': user_query,
            'generated_sql': sql,
            'execution_time_ms': execution_time,
            'success': success,
            'error': error
        }

        self.logger.info(json.dumps(log_entry))

        # Send metrics
        self.metrics.increment('text2sql.queries.total')
        if success:
            self.metrics.increment('text2sql.queries.success')
            self.metrics.timing('text2sql.execution_time', execution_time)
        else:
            self.metrics.increment('text2sql.queries.failed')
            self.metrics.increment(f'text2sql.errors.{self._categorize_error(error)}')

    def _categorize_error(self, error):
        """Categorize errors for metrics"""
        if 'syntax' in str(error).lower():
            return 'syntax_error'
        elif 'permission' in str(error).lower():
            return 'permission_denied'
        elif 'timeout' in str(error).lower():
            return 'timeout'
        else:
            return 'unknown'
Enter fullscreen mode Exit fullscreen mode

Handling Complex Scenarios

Multi-Turn Conversations

Maintain conversation context for follow-up questions:

class ConversationManager:
    def __init__(self):
        self.conversations = {}

    def add_context(self, session_id, user_query, sql, results):
        """Store conversation history"""
        if session_id not in self.conversations:
            self.conversations[session_id] = []

        self.conversations[session_id].append({
            'query': user_query,
            'sql': sql,
            'results': results[:5],  # Store sample results
            'timestamp': time.time()
        })

        # Keep only last 5 exchanges
        if len(self.conversations[session_id]) > 5:
            self.conversations[session_id] = self.conversations[session_id][-5:]

    def get_context(self, session_id):
        """Retrieve conversation context"""
        return self.conversations.get(session_id, [])

    def resolve_references(self, user_query, context):
        """Resolve pronouns and references in follow-up questions"""
        if not context:
            return user_query

        last_query = context[-1]['query']

        # Handle references like "it", "them", "that"
        if re.search(r'\b(it|them|that|those|these)\b', user_query, re.IGNORECASE):
            prompt = f"""
The user asked: "{last_query}"
Now they're asking: "{user_query}"

Rewrite the second question to be standalone by replacing pronouns with actual entities.

Rewritten question:
"""
            # Use LLM to resolve references
            resolved = llm.generate(prompt, temperature=0)
            return resolved.strip()

        return user_query
Enter fullscreen mode Exit fullscreen mode

Handling Ambiguous Queries

When queries are ambiguous, ask clarifying questions:

def detect_ambiguity(user_query, schema_context):
    """Identify ambiguous queries that need clarification"""

    ambiguity_signals = []

    # Multiple interpretations possible
    if 'sales' in user_query.lower():
        if 'sales_orders' in schema_context['tables'] and 'sales_reps' in schema_context['tables']:
            ambiguity_signals.append({
                'type': 'table_ambiguity',
                'message': 'Did you mean sales orders or sales representatives?'
            })

    # Missing time frame
    if any(word in user_query.lower() for word in ['total', 'count', 'average', 'sum']):
        if not any(time_word in user_query.lower() for time_word in ['today', 'yesterday', 'last', 'this', 'year', 'month', 'week']):
            ambiguity_signals.append({
                'type': 'missing_timeframe',
                'message': 'What time period should I consider? (e.g., last month, this year)'
            })

    return ambiguity_signals
Enter fullscreen mode Exit fullscreen mode

Practical Implementation for Northwind Database

Here's a complete working example using the Northwind database:

# Initialize system
pipeline = Text2SQLPipeline(
    llm_client=OpenAI(api_key=os.getenv('OPENAI_API_KEY'), model='gpt-4'),
    db_connection=psycopg2.connect(
        host='localhost',
        database='northwind',
        user='admin',
        password=os.getenv('DB_PASSWORD')
    ),
    db_metadata=northwind_schema_metadata,
    vector_db=ChromaDB(persist_directory='./query_examples')
)

# Example queries
queries = [
    "Show me total sales by country",
    "Which products have the highest profit margin?",
    "List customers who haven't ordered in the last 6 months",
    "What's the average order value by employee?"
]

for query in queries:
    print(f"\n{'='*60}")
    print(f"Q: {query}")
    print(f"{'='*60}")

    result = pipeline.process_query(query)

    print(f"\nSQL:\n{result['sql']}")
    print(f"\nResponse:\n{result['response']}")
    print(f"\nRows returned: {result['row_count']}")
Enter fullscreen mode Exit fullscreen mode

Deployment Considerations

Choosing the Right LLM

For production Text-to-SQL systems [][]:

  • GPT-4: Highest accuracy (85-90% on complex queries) but expensive ($0.03-0.06 per 1K tokens)
  • GPT-3.5-turbo: Good balance (70-75% accuracy) at lower cost ($0.001-0.002 per 1K tokens)
  • Claude 3: Strong reasoning, comparable to GPT-4
  • Open-source models (Llama 3, Mixtral): Lower accuracy (60-70%) but full control and no API costs

Cost Optimization

class CostOptimizer:
    def __init__(self, expensive_model, cheap_model):
        self.expensive_model = expensive_model  # GPT-4
        self.cheap_model = cheap_model  # GPT-3.5

    def route_to_model(self, user_query, schema_context):
        """Route to appropriate model based on complexity"""

        complexity_score = self._calculate_complexity(user_query, schema_context)

        if complexity_score > 0.7:
            # Complex query - use expensive model
            return self.expensive_model
        else:
            # Simple query - use cheap model
            return self.cheap_model

    def _calculate_complexity(self, query, schema):
        """Estimate query complexity"""
        score = 0

        # Multiple tables
        if len(schema['tables']) > 2:
            score += 0.3

        # Aggregations
        if any(word in query.lower() for word in ['sum', 'average', 'count', 'group', 'having']):
            score += 0.2

        # Joins
        if any(word in query.lower() for word in ['with', 'join', 'combine']):
            score += 0.2

        # Subqueries
        if any(word in query.lower() for word in ['each', 'per', 'within', 'nested']):
            score += 0.3

        return min(score, 1.0)
Enter fullscreen mode Exit fullscreen mode

Conclusion

Building production-ready Text-to-SQL systems requires going beyond academic benchmarks to address real-world challenges: security, performance, ambiguity handling, and user experience [][]. The multi-stage pipeline architecture presented here balances accuracy with practical considerations like cost, latency, and maintainability [][].

Key takeaways for enterprise implementation:

  • Schema linking reduces prompt size and improves accuracy for large databases [][]
  • Few-shot prompting with similar examples significantly boosts performance [page:3]
  • Validation and security layers prevent destructive queries and unauthorized access [][]
  • Partition awareness can improve query performance by 10-40x [][page:2]
  • Caching and cost optimization make the system economically viable at scale

Organizations implementing these practices have achieved 40-50% reductions in data access time and enabled non-technical users to extract insights independently [], transforming how businesses interact with their data.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Top comments (0)