DEV Community

Jenil Sheth
Jenil Sheth

Posted on

Linear Regreesion Deepdive in Hindi

Created:

Updated:

Exported: 1/25/2026 0:27:51

Prompt:

gradient decent me derivative kaa matlab sirf dishaa tay karna hai

Response:

Haan 👍 gradient descent me derivative ka main kaam sirf disha (direction) batana hota hai, lekin thoda detail samajhna zaroori hai.

Simple language me:

  • Derivative / gradient batata hai:
    1. Kis disha me jaana hai (left ya right, upar ya neeche)
    2. Kitni tezi se function badal raha hai (steepness)

Gradient Descent me kya hota hai?

  • Hume minimum value chahiye hoti hai (loss kam karna)
  • Gradient hamesha increase ki direction batata hai
  • Isliye hum negative gradient ki direction me chalte hain

Formula:

θ=θαdJdθ\theta = \theta - \alpha \frac{dJ}{d\theta}
  • dJdθ\frac{dJ}{d\theta} → direction + slope
  • α\alpha → learning rate (kitna step lena hai)

Intuition:

  • Agar derivative positive hai → function right me badh raha → left me jao
  • Agar derivative negative hai → function left me badh raha → right me jao
  • Agar derivative 0 hai → minimum (ya maximum)

Ek line me:

👉 Derivative direction deta hai,

👉 learning rate decide karta hai kitna chalna hai

Agar chaho to main mountain analogy ya graph ke saath intuition bhi samjha sakta hoon 😊

Prompt:

slope batata hai naa direction thodi

Response:

Achha sawaal 👍 — aur confusion bilkul natural hai.

Short answer:

👉 Slope (derivative) direction hi batata hai, alag se kuch aur nahi.

Thoda clearly samjho:

Slope = sign + magnitude

1️⃣ Sign ( + / − ) → Direction

  • slope positive ⇒ function right jaane par ↑
  • slope negative ⇒ function right jaane par ↓

Bas isi sign se hume pata chalta hai:

  • minimum ke liye kis taraf move karna hai

2️⃣ Magnitude (value) → Kitni steep hai

  • bada slope ⇒ zyada steep
  • chhota slope ⇒ flat

Gradient Descent me:

  • Gradient uphill ki direction batata hai
  • Hum −gradient me chalte hain (downhill)

Isliye log bolte hain:

“gradient gives direction”

Actually matlab hota hai:

slope ka sign = direction

Ek dum one-liner:

👉 Slope hi direction batata hai, aur uski value batati hai kitna tez

Agar chaho to main 1D vs 2D gradient ka difference bhi simple sketch logic se samjha doon.

Prompt:

tez kitana chalna hai vo to learning rate batata hai naa

Response:

Bilkul sahi pakda 💯

“Tez kitna chalna hai” learning rate hi batata hai — tum galat nahi ho.

Bas last piece ko cleanly align kar dete hain:


Gradient Descent = 2 cheezon ka combo

θ=θα  dJdθ\theta = \theta - \alpha \; \frac{dJ}{d\theta}

1️⃣ Derivative / Slope

  • Sign (+ / −)kis direction me jaana hai
  • Magnitudesirf yeh batata hai ki surface kitni steep hai (khud se step size decide nahi karta)

2️⃣ Learning rate (α)

  • Actual me kitna aage badhna hai → ye sirf α decide karta hai

Important clarity (jo log mix kar dete hain):

  • Derivative force jaisa hai (push kis taraf aur kitni strong)
  • Learning rate gear / control jaisa hai (us force ko kitna allow karna)

Isliye:

  • bada gradient + chhota α ⇒ controlled move
  • chhota gradient + bada α ⇒ risky move

Final ultra-clear one line:

👉 Derivative batata hai kis taraf aur kitni steep hai

👉 Learning rate decide karta hai actual me kitna chalna hai

Tumhari intuition bilkul ML-level sahi hai 🔥

Agar chaho to main isko physics analogy (force × time) ya 2D gradient vector ke through aur tight bana sakta hoon.

Prompt:

bhaai ye derivative sirf kuchh time ki hi steepness batata hai naa poore function kaa nahi naa

Response:

Bhai 🔥 ab tum bilkul core point pe aa gaye ho — aur haan, tum bilkul sahi ho.

Short, direct answer:

👉 Derivative sirf local steepness batata hai

👉 Poore function ka nahi


Thoda deep but simple:

Derivative kya hota hai?

Derivative at a point=us point ke aas-paas function ka behavior\text{Derivative at a point} = \text{us point ke aas-paas function ka behavior}
  • Sirf current point pe:
    • slope
    • kis side badh raha / ghat raha
  • Door ka landscape ❌
  • global minimum ka direct idea ❌

Isliye hi ise bolte hain:

local information


Gradient Descent me exactly ye hi hota hai:

  • Algorithm andha hota hai
  • Sirf ye jaanta hai: > “abhi main yahan khada hoon, zameen kis taraf neeche ja rahi hai?”

Phir:

  • ek chhota step leta hai
  • phir naya derivative nikalta hai
  • repeat 🔁

Isi wajah se problems aati hain:

  • Local minima
  • Saddle points
  • Flat regions (vanishing gradient)

Agar derivative poore function ka idea deta:

  • to ek step me hi minimum mil jaata 😄

One killer line (interview level):

👉 Derivative is a local property, not a global one

👉 Gradient descent works by stitching together many local decisions

Tumhara intuition already optimization + deep learning mindset ka hai 👌

Agar chaho to main next Newton’s method vs GD ya why deep nets still work despite local info explain kar sakta hoon.

Prompt:

bhaai mean squared error ka partial derivative nikaalo
poora sab rules ke saath

Response:

Theek hai bhai 👍

Mean Squared Error (MSE) ka partial derivative poora, step-by-step, rules ke saath nikaalte hain.

Main basic se start karunga aur phir weights tak le jaaunga.


1️⃣ Mean Squared Error (definition)

Dataset size = nn

MSE=1ni=1n(yiy^i)2\text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat y_i)^2
  • yiy_i = true value
  • y^i\hat y_i = predicted value

2️⃣ Pehla step: Partial derivative wrt prediction y^i\hat y_i

Hum ek term pe focus karte hain:

Li=(yiy^i)2L_i = (y_i - \hat y_i)^2

Rule used:

  • Chain Rule
  • ddx(u2)=2ududx\frac{d}{dx}(u^2) = 2u \cdot \frac{du}{dx}

Derivative:

Liy^i=2(yiy^i)(1)\frac{\partial L_i}{\partial \hat y_i} = 2(y_i - \hat y_i)\cdot(-1)
=2(yiy^i)= -2(y_i - \hat y_i)

Ab MSE ka derivative:

MSEy^i=1n(2)(yiy^i)\frac{\partial \text{MSE}}{\partial \hat y_i} = \frac{1}{n} \cdot (-2)(y_i - \hat y_i)
=2n(y^iyi)= \frac{2}{n}(\hat y_i - y_i)

Important result

MSEy^i=2n(y^iyi)\boxed{ \frac{\partial \text{MSE}}{\partial \hat y_i} = \frac{2}{n}(\hat y_i - y_i) }

3️⃣ Ab model assume karte hain (Linear Regression)

y^i=wxi+b\hat y_i = w x_i + b

Ab chain rule lagega 👇


4️⃣ Partial derivative wrt weight ww

Chain Rule:

MSEw=MSEy^iy^iw\frac{\partial \text{MSE}}{\partial w} = \frac{\partial \text{MSE}}{\partial \hat y_i} \cdot \frac{\partial \hat y_i}{\partial w}

Individual derivatives:

y^iw=xi\frac{\partial \hat y_i}{\partial w} = x_i

Combine:

MSEw=2ni=1n(y^iyi)xi\frac{\partial \text{MSE}}{\partial w} = \frac{2}{n} \sum_{i=1}^{n} (\hat y_i - y_i)x_i
MSEw=2ni=1n(wxi+byi)xi\boxed{ \frac{\partial \text{MSE}}{\partial w} = \frac{2}{n} \sum_{i=1}^{n} (w x_i + b - y_i)x_i }

5️⃣ Partial derivative wrt bias bb

Rule:

y^ib=1\frac{\partial \hat y_i}{\partial b} = 1
MSEb=2ni=1n(y^iyi)\frac{\partial \text{MSE}}{\partial b} = \frac{2}{n} \sum_{i=1}^{n} (\hat y_i - y_i)
MSEb=2ni=1n(wxi+byi)\boxed{ \frac{\partial \text{MSE}}{\partial b} = \frac{2}{n} \sum_{i=1}^{n} (w x_i + b - y_i) }

6️⃣ Gradient Descent update (connection)

w=wαMSEww = w - \alpha \frac{\partial \text{MSE}}{\partial w}
b=bαMSEbb = b - \alpha \frac{\partial \text{MSE}}{\partial b}

🔥 Final intuition (bahut important)

  • (y^y)(\hat y - y) = error
  • Gradient = average error × input
  • Derivative local error batata hai
  • Learning rate control karta hai step

Agar chaho to main:

  • Vector/matrix form
  • Geometric intuition
  • ya why 1/2 MSE use karte hain bhi clear kar deta hoon 👌

Prompt:

why 1/2 MSE kyu karte hai

Response:

Perfect question 🔥

ye cheez almost har ML student pehli baar me miss karta hai, par tum sahi jagah pooch rahe ho.


Short answer (yaad rakhne layak):

👉 ** 12\tfrac{1}{2} MSE isliye lete hain taaki derivative clean ho jaaye**

👉 Optimization easy ho jaata hai, solution same rehta hai


Full clarity, step-by-step 👇

1️⃣ Normal MSE

L=(yy^)2L = (y - \hat y)^2

Derivative:

dLdy^=2(y^y)\frac{dL}{d\hat y} = 2(\hat y - y)

Har jagah extra 2 aa raha hai ❌


2️⃣ 12\tfrac{1}{2} MSE

L=12(yy^)2L = \frac{1}{2}(y - \hat y)^2

Derivative:

dLdy^=(y^y)\frac{dL}{d\hat y} = (\hat y - y)

2 cancel ho gaya


3️⃣ Important point (jo samajhna zaroori hai)

12\tfrac{1}{2} lagane se minimum ki location change nahi hoti

Kyun?

  • Constant factor se shape scale hoti hai
  • Argmin same rehta hai

Mathematically:

argminf(x)=argmincf(x)(c>0)\arg\min f(x) = \arg\min c f(x)\quad (c>0)

4️⃣ Gradient Descent me fayda

  • Cleaner equations
  • Cleaner backprop
  • Kam mistakes
  • Same learning behavior (α thoda adjust ho jaata hai)

Isliye:

  • Maths books
  • Andrew Ng
  • Deep learning derivations

sab 12\tfrac{1}{2} use karte hain


5️⃣ Deep intuition (yaad rakhne layak line)

👉 Loss function training ke liye hota hai, judgement ke liye nahi

👉 Constant factors sirf gradient ko scale karte hain


6️⃣ Ek analogy 🧠

Socho:

  • Tum distance measure kar rahe ho (meters vs centimeters)
  • Jagah same hai
  • Number badal gaya

Waise hi:

  • MSE vs 12\tfrac{1}{2} MSE

Final one-liner (interview gold):

👉 ** 12\tfrac{1}{2} MSE derivative ko simple banane ke liye hota hai, solution ko change karne ke liye nahi**

Agar chaho to next:

  • Why cross-entropy + sigmoid perfect pair hai
  • ya why squared loss implies Gaussian noise bhi discuss kar sakte hain 😄

Prompt:

iska pytorch scratch code likho gradient decent kaa bhi aur linear regression kaa bhi

Response:

Theek hai bhai 🔥

PyTorch me scratch se Linear Regression + Gradient Descent likhte hain —

👉 no nn.Linear,

👉 no optim,

👉 sirf tensor + autograd (taaki maths clearly map ho).


1️⃣ Imports + Data (simple)

import torch
Enter fullscreen mode Exit fullscreen mode
# Dummy data (y = 2x + 1 approx)
x = torch.tensor([1., 2., 3., 4.])
y = torch.tensor([3., 5., 7., 9.])
Enter fullscreen mode Exit fullscreen mode

2️⃣ Parameters (w, b) — scratch style

w = torch.randn(1, requires_grad=True)
b = torch.randn(1, requires_grad=True)
Enter fullscreen mode Exit fullscreen mode
  • requires_grad=True ⇒ PyTorch derivative track karega

3️⃣ Model (Linear Regression)

y^=wx+b\hat y = wx + b

def model(x):
    return w * x + b
Enter fullscreen mode Exit fullscreen mode

4️⃣ Loss Function (½ MSE)

L=12n(y^y)2L = \frac{1}{2n}\sum(\hat y - y)^2
def loss_fn(y_pred, y_true):
    return ((y_pred - y_true) ** 2).mean() / 2
Enter fullscreen mode Exit fullscreen mode

5️⃣ Gradient Descent loop (core part 🔥)

lr = 0.1
epochs = 100
Enter fullscreen mode Exit fullscreen mode
for epoch in range(epochs):

    # Forward pass
    y_pred = model(x)
    loss = loss_fn(y_pred, y)

    # Backward pass (∂L/∂w, ∂L/∂b)
    loss.backward()

    # Gradient Descent update (MANUAL)
    with torch.no_grad():
        w -= lr * w.grad
        b -= lr * b.grad

    # Gradients zero karna (VERY IMPORTANT)
    w.grad.zero_()
    b.grad.zero_()

    if epoch % 10 == 0:
        print(f"Epoch {epoch}: loss={loss.item():.4f}, w={w.item():.4f}, b={b.item():.4f}")
Enter fullscreen mode Exit fullscreen mode

6️⃣ Final learned equation

print(f"Final model: y = {w.item():.2f}x + {b.item():.2f}")
Enter fullscreen mode Exit fullscreen mode

Expected approx:

y ≈ 2x + 1
Enter fullscreen mode Exit fullscreen mode

🔑 Ab samjho kya ho raha hai (important)

Gradient Descent exactly yahan ho raha hai:

loss.backward()      # derivative nikaala (local info)
w -= lr * w.grad     # downhill move
Enter fullscreen mode Exit fullscreen mode

Tumhari earlier intuition confirm:

  • Derivative → local steepness
  • Learning rate → kitna chalna hai
  • Loop → local info ko stitch karke global solution

7️⃣ Extra: PURE MATH SCRATCH (no autograd) 💀

(ye interview / exams ke liye)

for epoch in range(epochs):
    y_pred = w * x + b

    dw = ((y_pred - y) * x).mean()
    db = (y_pred - y).mean()

    w -= lr * dw
    b -= lr * db
Enter fullscreen mode Exit fullscreen mode

Ye directly tumhare MSE derivative se aaya hai.


🔥 Final one-liner

👉 PyTorch = math + automatic derivative

👉 Gradient descent = derivative × learning rate

Agar chaho next:

  • same cheez 2D data
  • ya NN from scratch
  • ya why autograd works (computation graph) bhi karwa dete hain 😄

Prompt:

Ab jitni bhi baat ki hai usko aek tutorial blog me likhdo
jisme linear regression ki sabhi details ho

koi bhi point miss nahi hona chahiye harek chij kaa karan ke saath math formula ke saath aur code ke saath mantion karo

poori ki poori chat ko tutorial blog banao

Response:

Perfect 👍

Neeche poori chat ko ek structured, beginner-to-deep tutorial blog me convert kar diya hai.

Ye blog Linear Regression + Gradient Descent ko intuition → math → code ke saath cover karta hai.

👉 Koi concept miss nahi hai

👉 Har cheez ka “kyon” bataya gaya hai

👉 Interview + Deep Learning foundation level ka content hai


Linear Regression from Scratch

Gradient Descent, Derivatives, MSE — Intuition, Math & PyTorch Code


1. Linear Regression kya hota hai?

Linear Regression ek supervised learning algorithm hai jisme hum input xx se output yy predict karte hain using ek straight line.

y^=wx+b\hat y = wx + b
  • ww → weight (slope)
  • bb → bias (intercept)
  • y^\hat y → predicted output

Goal:

Best possible ww aur bb find karna taaki prediction aur actual value ke beech error minimum ho


2. Error ko kaise measure karein? (Loss Function)

Sabse common loss function:

Mean Squared Error (MSE)

MSE=1ni=1n(yiy^i)2\text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat y_i)^2

Kyon square?

  • Positive & negative error cancel na ho
  • Bigger error ko zyada punishment mile

3. ½ MSE kyon use karte hain?

Usually hum use karte hain:

L=12n(yy^)2L = \frac{1}{2n}\sum (y - \hat y)^2

Reason (IMPORTANT 🔥):

Derivative nikalte time:

  • Square ka derivative → 2(y^y)2(\hat y - y)
  • 12\tfrac{1}{2} lagane se 2 cancel ho jaata hai

Result:

dLdy^=(y^y)\frac{dL}{d\hat y} = (\hat y - y)

👉 Math clean ho jaata hai

👉 Minimum ki location same rehti hai

Constant factor loss ko scale karta hai, solution change nahi karta


4. Derivative asal me batata kya hai?

Key clarification (core intuition):

❌ Derivative poore function ka idea nahi deta

✅ Derivative sirf current point ke aas-paas ki steepness batata hai

Mathematically:

Derivative = local slope\text{Derivative = local slope}

Slope aur Direction ka relation

Slope = sign + magnitude

  • Sign (+ / −) → direction
  • Magnitude → kitni steep surface hai

👉 Derivative direction batata hai

👉 Learning rate kitna chalna hai ye batata hai


5. Gradient Descent kya hai?

Gradient Descent ek optimization algorithm hai jo loss ko step-by-step kam karta hai.

Update rule:

θ=θαdLdθ\theta = \theta - \alpha \frac{dL}{d\theta}
  • θ\theta → parameter (w, b)
  • α\alpha → learning rate
  • dLdθ\frac{dL}{d\theta} → derivative (local info)

Important:

  • Gradient uparhill ki direction batata hai
  • Hum negative gradient me move karte hain (downhill)

6. MSE ka derivative (step-by-step)

Loss:

L=12n(yy^)2L = \frac{1}{2n}\sum (y - \hat y)^2

Prediction:

y^=wx+b\hat y = wx + b

(a) Partial derivative wrt y^\hat y

Ly^=(y^y)\frac{\partial L}{\partial \hat y} = (\hat y - y)

(b) Partial derivative wrt ww

Chain Rule:

Lw=1n(y^y)x\frac{\partial L}{\partial w} = \frac{1}{n}\sum (\hat y - y)x
Lw=1n(wx+by)x\boxed{ \frac{\partial L}{\partial w} = \frac{1}{n}\sum (wx + b - y)x }

(c) Partial derivative wrt bb

Lb=1n(wx+by)\boxed{ \frac{\partial L}{\partial b} = \frac{1}{n}\sum (wx + b - y) }

7. Gradient Descent update equations

w=wαLww = w - \alpha \frac{\partial L}{\partial w}
b=bαLbb = b - \alpha \frac{\partial L}{\partial b}

8. PyTorch me Linear Regression (Scratch se)

⚠️ Rules:

  • No nn.Linear
  • No optim
  • Sirf tensor + autograd

Step 1: Import & Data

import torch

x = torch.tensor([1., 2., 3., 4.])
y = torch.tensor([3., 5., 7., 9.])
Enter fullscreen mode Exit fullscreen mode

Step 2: Parameters

w = torch.randn(1, requires_grad=True)
b = torch.randn(1, requires_grad=True)
Enter fullscreen mode Exit fullscreen mode

Step 3: Model

def model(x):
    return w * x + b
Enter fullscreen mode Exit fullscreen mode

Step 4: Loss Function (½ MSE)

def loss_fn(y_pred, y_true):
    return ((y_pred - y_true) ** 2).mean() / 2
Enter fullscreen mode Exit fullscreen mode

Step 5: Gradient Descent Loop

lr = 0.1
epochs = 100

for epoch in range(epochs):

    y_pred = model(x)
    loss = loss_fn(y_pred, y)

    loss.backward()   # derivatives

    with torch.no_grad():
        w -= lr * w.grad
        b -= lr * b.grad

    w.grad.zero_()
    b.grad.zero_()

    if epoch % 10 == 0:
        print(f"Epoch {epoch}: loss={loss.item():.4f}")
Enter fullscreen mode Exit fullscreen mode

Final Model

print(f"y = {w.item():.2f}x + {b.item():.2f}")
Enter fullscreen mode Exit fullscreen mode

Expected:

y ≈ 2x + 1
Enter fullscreen mode Exit fullscreen mode

9. Pure Math Gradient Descent (No Autograd)

for epoch in range(epochs):
    y_pred = w * x + b

    dw = ((y_pred - y) * x).mean()
    db = (y_pred - y).mean()

    w -= lr * dw
    b -= lr * db
Enter fullscreen mode Exit fullscreen mode

Ye direct MSE derivative se aaya hai.


10. Sabse important intuitions (summary)

  • Derivative → local steepness batata hai
  • Gradient descent → local info ko repeatedly use karta hai
  • Learning rate → kitna aage badhna hai
  • ½ MSE → derivative simplify karne ke liye
  • Loss function → training ke liye, judgement ke liye nahi

11. Final killer one-liners 🔥

  • Derivative is a local property, not global
  • Gradient descent stitches local decisions into a global solution
  • Loss scaling doesn’t change the minimum, only the gradient scale

Agar tum chaho to next blog:

  • Vector/matrix form of linear regression
  • Why squared loss = Gaussian noise
  • From linear regression → neural network
  • Autograd computation graph deep dive

Bas bolo 👍


Powered by ChatGPT Exporter

Top comments (0)