DEV Community

Jenil Sheth
Jenil Sheth

Posted on

Logistic Regression Intution

Prompt:

logistic regression ke baare me sab mathamtical denotation likho aur uska explaination do aur derivatives bhi nikaalo

Response:

नीचे Logistic Regression का पूरा mathematical formulation, notation, intuition, और derivatives (gradient) step-by-step समझाया गया है — बिल्कुल exam + ML interview level तक।


1. Logistic Regression क्या है? (Idea)

Logistic Regression एक binary classification algorithm है

जहाँ output केवल दो classes में होता है:

y0,1y \in {0,1}

उदाहरण:

  • Email → Spam (1) / Not Spam (0)
  • Disease → Yes (1) / No (0)

यह probability predict करता है:

P(y=1x)P(y=1 \mid x)

2. Notations (Mathematical Symbols)

Symbol Meaning
xRnx \in \mathbb{R}^n Input feature vector
y0,1y \in {0,1} True label
wRnw \in \mathbb{R}^n Weight vector
bRb \in \mathbb{R} Bias
zz Linear combination
y^\hat{y} Predicted probability
mm Number of training examples

3. Linear Model

पहले हम linear combination निकालते हैं:

z=wTx+bz = w^T x + b

लेकिन zz की value -\infty से ++\infty तक जा सकती है

जबकि हमें probability चाहिए [0,1][0,1] में।


4. Sigmoid Function (Logistic Function)

इसलिए हम Sigmoid लगाते हैं:

σ(z)=11+ez\sigma(z) = \frac{1}{1 + e^{-z}}

अब prediction:

y^=P(y=1x)=σ(wTx+b)\hat{y} = P(y=1 \mid x) = \sigma(w^T x + b)

Sigmoid Properties:

  • z+σ(z)1z \to +\infty \Rightarrow \sigma(z) \to 1
  • zσ(z)0z \to -\infty \Rightarrow \sigma(z) \to 0

5. Hypothesis Function

hθ(x)=y^=11+e(wTx+b)h_\theta(x) = \hat{y} = \frac{1}{1 + e^{-(w^T x + b)}}

6. Cost Function (Log Loss / Binary Cross Entropy)

Simple MSE यहाँ काम नहीं करता, इसलिए हम Log Loss use करते हैं:

Single example loss:

L(y^,y)=[ylog(y^)+(1y)log(1y^)]L(\hat{y}, y) = - \left[ y \log(\hat{y}) + (1-y)\log(1-\hat{y}) \right]

पूरे dataset के लिए cost:

J(w,b)=1mi=1m[y(i)log(y^(i))(1y(i))log(1y^(i))]J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \left[ - y^{(i)} \log(\hat{y}^{(i)}) - (1-y^{(i)}) \log(1-\hat{y}^{(i)}) \right]

7. Optimization Goal

हमें find करना है:

minw,bJ(w,b)\min_{w,b} J(w,b)

इसके लिए हम Gradient Descent use करते हैं।


8. Derivatives (सबसे ज़रूरी हिस्सा 🔥)

Step 1: Sigmoid derivative

σ(z)=11+ez\sigma(z) = \frac{1}{1+e^{-z}}
dσdz=σ(z)(1σ(z))\frac{d\sigma}{dz} = \sigma(z)(1-\sigma(z))

Step 2: Cost function derivative

Final result (after chain rule):

Weight के respect में gradient:

Jw=1mi=1m(y^(i)y(i))x(i)\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x^{(i)}

Bias के respect में gradient:

Jb=1mi=1m(y^(i)y(i))\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})

👉 Important insight:

Error term = y^y\hat{y} - y


9. Gradient Descent Update Rules

w:=wαJww := w - \alpha \frac{\partial J}{\partial w}
b:=bαJbb := b - \alpha \frac{\partial J}{\partial b}

जहाँ:

  • α\alpha = learning rate

10. Vectorized Form (Deep Learning Friendly)

अगर पूरा data matrix XRm×nX \in \mathbb{R}^{m \times n} :

y^=σ(Xw+b)\hat{y} = \sigma(Xw + b)
wJ=1mXT(y^y)\nabla_w J = \frac{1}{m} X^T (\hat{y} - y)
bJ=1m(y^y)\nabla_b J = \frac{1}{m} \sum (\hat{y} - y)

11. Decision Boundary

y^0.5y=1\hat{y} \ge 0.5 \Rightarrow y = 1
y^<0.5y=0\hat{y} < 0.5 \Rightarrow y = 0

Decision boundary:

wTx+b=0w^T x + b = 0

12. Intuition Summary 🧠

  • Logistic regression probability model है
  • Sigmoid → linear output को probability में बदलता है
  • Log loss → confident गलत prediction को ज़्यादा punish करता है
  • Gradient descent → error (y^y)(\hat{y}-y) को minimize करता है

अगर चाहो तो मैं:

  • Derivation step-by-step chain rule से
  • Maximum Likelihood Estimation (MLE) proof
  • Regularization (L1/L2) with derivatives
  • Geometric interpretation

भी समझा सकता हूँ 😊

Prompt:

chain rule hi samjaao ki derivatives kaise nikaala aek aek rules ke saath

Response:

ठीक है — अब हम Logistic Regression ke derivatives को pure chain rule से, ek-ek step + rule के साथ निकालेंगे।

कोई jump नहीं, बिल्कुल calculus flow में। ✍️


1. Overall Computational Graph (Flow samjho)

एक data point के लिए:

x  w,b  z  sigmoid  y^  loss  Lx \;\xrightarrow[]{w,b}\; z \;\xrightarrow[]{\text{sigmoid}}\; \hat y \;\xrightarrow[]{\text{loss}}\; L

जहाँ:

z=wTx+bz = w^T x + b
y^=σ(z)\hat y = \sigma(z)
L=[ylogy^+(1y)log(1y^)]L = -[y\log \hat y + (1-y)\log(1-\hat y)]

हमें निकालना है:

Lw,Lb\frac{\partial L}{\partial w}, \quad \frac{\partial L}{\partial b}

Chain rule:

Lw=Ly^y^zzw\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat y} \cdot \frac{\partial \hat y}{\partial z} \cdot \frac{\partial z}{\partial w}

2. Step-1: Loss ka derivative wrt y^\hat y

Loss function:

L=[ylog(y^)+(1y)log(1y^)]L = -\left[y\log(\hat y) + (1-y)\log(1-\hat y)\right]

Rule used:

  • ddx(logx)=1x\frac{d}{dx}(\log x) = \frac{1}{x}
  • Constant multiple rule

Derivative:

Ly^=[yy^1y1y^]\frac{\partial L}{\partial \hat y} = -\left[ \frac{y}{\hat y} - \frac{1-y}{1-\hat y} \right]

3. Step-2: Sigmoid ka derivative wrt zz

Sigmoid:

y^=σ(z)=11+ez\hat y = \sigma(z) = \frac{1}{1+e^{-z}}

Rule used:

  • Quotient rule
  • Exponential rule

Result (important):

y^z=y^(1y^)\frac{\partial \hat y}{\partial z} = \hat y(1-\hat y)

4. Step-3: Linear part ka derivative

z=wTx+bz = w^T x + b

Derivatives:

wrt weight wjw_j :

zwj=xj\frac{\partial z}{\partial w_j} = x_j

Vector form:

zw=x\frac{\partial z}{\partial w} = x

wrt bias:

zb=1\frac{\partial z}{\partial b} = 1

5. Chain Rule Apply karo (Main Magic ✨)

अब सब multiply करो:

Lw=Ly^y^zzw\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat y} \cdot \frac{\partial \hat y}{\partial z} \cdot \frac{\partial z}{\partial w}

Substitute:

=([yy^1y1y^])y^(1y^)x= \left( -\left[ \frac{y}{\hat y} - \frac{1-y}{1-\hat y} \right] \right) \cdot \hat y(1-\hat y) \cdot x

6. Simplification (Very Important Step)

Bracket simplify करो:

[yy^1y1y^]y^(1y^)-\left[ \frac{y}{\hat y} - \frac{1-y}{1-\hat y} \right] \cdot \hat y(1-\hat y)

Common denominator से:

=(y^y)= (\hat y - y)

🔥 यही सबसे beautiful result है


7. Final Gradient (Single Example)

Weight:

Lw=(y^y)x\boxed{ \frac{\partial L}{\partial w} = (\hat y - y)x }

Bias:

Lb=(y^y)\boxed{ \frac{\partial L}{\partial b} = (\hat y - y) }

8. Multiple Data Points (Averaging)

Jw=1mi=1m(y^(i)y(i))x(i)\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (\hat y^{(i)} - y^{(i)})x^{(i)}
Jb=1mi=1m(y^(i)y(i))\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\hat y^{(i)} - y^{(i)})

9. Chain Rule Intuition 🧠

  • Loss बदलता है → prediction बदलने से
  • Prediction बदलता है → z बदलने से
  • z बदलता है → weight बदलने से

इसलिए:

Error=(y^y)\text{Error} = (\hat y - y)

अगर चाहो तो मैं:

  • हर derivative को computational graph पर arrows के साथ
  • Backpropagation perspective
  • Same derivation with MLE
  • Regularization ke saath chain rule

भी करा सकता हूँ 🔥


Top comments (0)