DEV Community

Jenil Sheth
Jenil Sheth

Posted on

Supervised Regression ALGOS

Prompt:

ye paancho algo ko sirf mathamatical terms me hi samjaaiye
sab topics aa jaane chahiye

  • Linear Regression
  • Multiple Linear Regression
  • Polynomial Regression
  • Ridge Regression
  • Lasso Regression
  • Elastic Net
  • Bayesian Regression
  • Quantile Regression
  • Support Vector Regression (SVR)
  • Decision Tree Regression
  • Random Forest Regression
  • Gradient Boosting Regression
  • XGBoost Regression
  • LightGBM Regression
  • CatBoost Regression

2/2

Response:

नीचे aapke bataye sabhi regression algorithms ko sirf mathematical terms + equations + optimization objective ke through explain kiya gaya hai.

(No intuition, no coding — pure mathematics, exam + theory focused)


1️⃣ Linear Regression

Model

y=β0+β1x1y = \beta_0 + \beta_1 x_1

Vector Form

y=Xβ\mathbf{y} = \mathbf{X}\boldsymbol{\beta}

Objective Function (Ordinary Least Squares)

minβ  J(β)=i=1n(yiy^i)2\min_{\boldsymbol{\beta}} \; J(\boldsymbol{\beta}) = \sum_{i=1}^{n}(y_i - \hat{y}_i)^2

Closed Form Solution

β=(XTX)1XTy\boldsymbol{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}

2️⃣ Multiple Linear Regression

Model

y=β0+β1x1+β2x2++βpxpy = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p

Matrix Form

y=Xβ\mathbf{y} = \mathbf{X}\boldsymbol{\beta}

Loss Function

minβi=1n(yixiTβ)2\min_{\boldsymbol{\beta}} \sum_{i=1}^{n}(y_i - \mathbf{x}_i^T\boldsymbol{\beta})^2

(Solution same as Linear Regression)


3️⃣ Polynomial Regression

Model

y=β0+β1x+β2x2++βdxdy = \beta_0 + \beta_1 x + \beta_2 x^2 + \cdots + \beta_d x^d

Feature Transformation

ϕ(x)=[1,x,x2,,xd]\phi(x) = [1, x, x^2, \dots, x^d]

Optimization

minβi=1n(yiϕ(xi)Tβ)2\min_{\boldsymbol{\beta}} \sum_{i=1}^{n}(y_i - \phi(x_i)^T\boldsymbol{\beta})^2

⚠️ Still linear in parameters


4️⃣ Ridge Regression (L2 Regularization)

Objective Function

minβ(i=1n(yixiTβ)2+λj=1pβj2)\min_{\boldsymbol{\beta}} \left( \sum_{i=1}^{n}(y_i - \mathbf{x}i^T\boldsymbol{\beta})^2 + \lambda \sum{j=1}^{p}\beta_j^2 \right)

Closed Form

β=(XTX+λI)1XTy\boldsymbol{\beta} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}

5️⃣ Lasso Regression (L1 Regularization)

Objective Function

minβ(i=1n(yixiTβ)2+λj=1pβj)\min_{\boldsymbol{\beta}} \left( \sum_{i=1}^{n}(y_i - \mathbf{x}i^T\boldsymbol{\beta})^2 + \lambda \sum{j=1}^{p}|\beta_j| \right)

Property

  βj=0(sparse solution)\exists \; \beta_j = 0 \quad \text{(sparse solution)}

❌ No closed-form solution → Convex Optimization


6️⃣ Elastic Net Regression

Objective Function

minβ(i=1n(yixiTβ)2+λ1βj+λ2βj2)\min_{\boldsymbol{\beta}} \left( \sum_{i=1}^{n}(y_i - \mathbf{x}_i^T\boldsymbol{\beta})^2 + \lambda_1 \sum|\beta_j| + \lambda_2 \sum \beta_j^2 \right)

Special Cases

  • Ridge → λ1=0\lambda_1=0
  • Lasso → λ2=0\lambda_2=0

7️⃣ Bayesian Regression

Likelihood

p(yX,β)=N(Xβ,σ2I)p(\mathbf{y}|\mathbf{X},\boldsymbol{\beta}) = \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})

Prior

p(β)=N(0,τ2I)p(\boldsymbol{\beta}) = \mathcal{N}(0, \tau^2\mathbf{I})

Posterior

p(βy,X)p(yX,β)p(β)p(\boldsymbol{\beta}|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\boldsymbol{\beta})p(\boldsymbol{\beta})

MAP Estimation

βMAP=(XTX+λI)1XTy\boldsymbol{\beta}_{MAP} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}

📌 Same as Ridge Regression


8️⃣ Quantile Regression

Quantile Loss (Pinball Loss)

ρτ(u)={τuu0 (τ1)uu<0\rho_\tau(u) = \begin{cases} \tau u & u \ge 0 \ (\tau-1)u & u < 0 \end{cases}

Objective

minβi=1nρτ(yixiTβ)\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho_\tau(y_i - \mathbf{x}_i^T\boldsymbol{\beta})

Special Case

  • τ=0.5\tau=0.5 → Median Regression

9️⃣ Support Vector Regression (SVR)

Model

f(x)=wTϕ(x)+bf(x) = \mathbf{w}^T\phi(x) + b

Optimization

minw,b12w2+C(ξi+ξi)\min_{\mathbf{w},b} \frac{1}{2}|\mathbf{w}|^2 + C \sum (\xi_i + \xi_i^*)

Subject to:

{yif(xi)ϵ+ξi f(xi)yiϵ+ξi\begin{cases} y_i - f(x_i) \le \epsilon + \xi_i \ f(x_i) - y_i \le \epsilon + \xi_i^* \end{cases}

Kernel Trick

K(xi,xj)=ϕ(xi)Tϕ(xj)K(x_i,x_j) = \phi(x_i)^T\phi(x_j)

🔟 Decision Tree Regression

Prediction

y^R=1RiRyi\hat{y}R = \frac{1}{|R|}\sum{i \in R} y_i

Split Criterion

min(iR1(yiyˉR1)2+iR2(yiyˉR2)2)\min \left( \sum_{i \in R_1}(y_i - \bar{y}{R_1})^2 + \sum{i \in R_2}(y_i - \bar{y}_{R_2})^2 \right)

1️⃣1️⃣ Random Forest Regression

Ensemble Prediction

y^=1Tt=1Tft(x)\hat{y} = \frac{1}{T}\sum_{t=1}^{T} f_t(x)

Each ftf_t = decision tree trained on bootstrap sample


1️⃣2️⃣ Gradient Boosting Regression

Additive Model

FM(x)=m=1Mγmhm(x)F_M(x) = \sum_{m=1}^{M} \gamma_m h_m(x)

Residual

ri(m)=yiFm1(xi)r_i^{(m)} = y_i - F_{m-1}(x_i)

Optimization

hm=argmin(ri(m)h(xi))2h_m = \arg\min \sum (r_i^{(m)} - h(x_i))^2

1️⃣3️⃣ XGBoost Regression

Objective

L=l(yi,y^i)+Ω(fk)\mathcal{L} = \sum l(y_i,\hat{y}_i) + \sum \Omega(f_k)

Regularization

Ω(f)=γT+12λwj2\Omega(f) = \gamma T + \frac{1}{2}\lambda \sum w_j^2

Uses

  • 2nd order Taylor Expansion
  • Gradient + Hessian

1️⃣4️⃣ LightGBM Regression

Same objective as XGBoost

Split Strategy

Choose feature with max ΔL\text{Choose feature with max } \Delta \mathcal{L}

Uses:

  • Histogram-based binning
  • Leaf-wise growth

1️⃣5️⃣ CatBoost Regression

Objective

L=l(yi,y^i)\mathcal{L} = \sum l(y_i,\hat{y}_i)

Special Property

Ordered Target Statistics\text{Ordered Target Statistics}

Reduces:

E[Prediction Shift]\mathbb{E}[\text{Prediction Shift}]

📌 ONE-LINE SUMMARY (Pure Math)

Algorithm Core Mathematical Idea
Linear Least Squares
Ridge L2 regularization
Lasso L1 sparsity
Elastic Net L1 + L2
Bayesian Posterior inference
SVR Margin + ε-insensitive loss
Tree Variance minimization
Boosting Gradient descent in function space

Agar aap chaho to next:

  • 🔹 sabke gradients derive kar du
  • 🔹 convex vs non-convex proof
  • 🔹 interview ke liye short math notes
  • 🔹 deep comparison (Ridge vs Lasso vs Elastic)

bas boliye 👍

Prompt:

sab maths function ko aasan bhsha me samjaaiye aek aek karke
jisase kisi ko bhi samaj me aa jaaye jisne isko dekha tak nahi ho
lekin deep baat karna aek aek chij samjaani hai

Response:

बहुत अच्छा सवाल है 👍

अब मैं sirf maths functions / equations को bilkul basic level se,

ek-ek cheez ko tod-tod kar, aasaan bhasha + deep clarity ke saath samjhaunga —

ऐसे कि jisne ML ya calculus dekha bhi na ho, usko bhi samaj aa jaaye.

⚠️ Is answer ko slowly padhna. Ye ek math ki kahaani hai, shortcut nahi.


🧠 Sabse Pehle Common Maths Samjho (Foundation)

1️⃣ Data kya hota hai (Math me)

Maan lo:

  • xx = input (jaise: ghar ka size)
  • yy = output (jaise: ghar ka price)

Humare paas bahut saare data points hote hain:

(x1,y1),(x2,y2),(x3,y3),,(xn,yn)(x_1,y_1), (x_2,y_2), (x_3,y_3), \dots, (x_n,y_n)

2️⃣ Model ka matlab (Math language)

Model ek function hota hai:

y^=f(x)\hat{y} = f(x)
  • yy = actual value
  • y^\hat{y} = model ka prediction
  • ff = equation jo hum seekh rahe hain

3️⃣ Error kya hota hai

Prediction galat ho sakta hai.

Error=yy^\text{Error} = y - \hat{y}

Positive → kam predict kiya

Negative → zyada predict kiya


4️⃣ Loss function kya hota hai (sabse important)

Loss function ek number deta hai jo batata hai:

"Model kitna galat hai?"

Sabse simple:

(yy^)2(y - \hat{y})^2

❓ Square kyon?

  • minus sign hat jaata hai
  • badi galti ko zyada punishment

🔵 1️⃣ Linear Regression (bilkul zero se)

Equation

y^=β0+β1x\hat{y} = \beta_0 + \beta_1 x

Matlab:

  • β0\beta_0 → jab x=0x=0 , tab value
  • β1\beta_1 xx 1 unit badhne par yy kitna badhe

Loss Function

(yi(β0+β1xi))2\sum (y_i - (\beta_0 + \beta_1 x_i))^2

Iska matlab:

  • har data point ka error nikalo
  • square karo
  • sab jod do

Goal kya hai?

Is sum ko sabse chhota banana\text{Is sum ko sabse chhota banana}

Is process ko kehte hain:

Optimization


🔵 2️⃣ Multiple Linear Regression

Equation

y^=β0+β1x1+β2x2\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2

Matlab:

  • x1x_1 = size
  • x2x_2 = rooms

Har feature ka apna weight.


Loss

(yi(β0+β1x1i+β2x2i))2\sum (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}))^2

➡️ Same idea, bas inputs zyada.


🔵 3️⃣ Polynomial Regression

Equation

y^=β0+β1x+β2x2\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2

Matlab:

  • relation seedhi line nahi
  • curve hai

Par dhyaan do:

** β\beta abhi bhi linearly aa rahe hain**


Loss

Same squared error.


🟢 4️⃣ Ridge Regression (yahan se deep baat)

Problem:

  • β\beta bahut bade ho jaate hain
  • model overfit karta hai

Solution:

Penalty lagao.

New Loss

(yy^)2+λβ2\sum (y - \hat{y})^2 + \lambda \sum \beta^2

Matlab:

  • pehla part → galti
  • doosra part → weights ko chhota rakhna
  • λ\lambda = kitni punishment deni hai

Intuition:

"Achha model wo hai jo

kam galti kare

aur zyada complex bhi na ho"


🟢 5️⃣ Lasso Regression

Loss

(yy^)2+λβ\sum (y - \hat{y})^2 + \lambda \sum |\beta|

Difference:

  • Ridge → square
  • Lasso → absolute value

Important baat:

Absolute value corner banata hai

➡️ kuch β=0\beta = 0 ho jaate hain

Matlab:

feature selection automatic


🟢 6️⃣ Elastic Net

Loss

(yy^)2+λ1β+λ2β2\sum (y - \hat{y})^2 + \lambda_1 \sum |\beta| + \lambda_2 \sum \beta^2

Matlab:

  • Lasso + Ridge
  • sparsity + stability

🟣 7️⃣ Bayesian Regression

Yahan hum kehte hain:

"Weights fixed number nahi

probability hain"


Prior

βN(0,σ2)\beta \sim \mathcal{N}(0,\sigma^2)

Matlab:

  • pehle se maanna ki weights chhote honge

Posterior

P(βdata)P(\beta|data)

Final answer = mean of distribution

➡️ Math me ye Ridge jaisa ban jaata hai


🟠 8️⃣ Quantile Regression

Normal regression:

average predict karta hai

Quantile regression:

median ya upper/lower limit


Loss

ρ(u)={τuu>0 (τ1)uu<0\rho(u)= \begin{cases} \tau u & u>0 \ (\tau-1)u & u<0 \end{cases}

Matlab:

  • galti ko equal treat nahi karta
  • ek side zyada punishment

🔴 9️⃣ SVR (Support Vector Regression)

Idea:

"Error tab tak ignore karo

jab tak wo ϵ\epsilon ke andar hai"


Loss:

  • agar error < ε → zero
  • agar bahar → linear penalty

Optimization:

12w2+C(error)\frac{1}{2}|w|^2 + C(\text{error})

➡️ smooth + flat function


🟤 🔟 Decision Tree Regression

Tree bolta hai:

"Data ko tod do"


Prediction:

Region ka average

y^=mean of region\hat{y} = \text{mean of region}

Split:

Wo jagah chuno jahan:

variance sabse kam ho\text{variance sabse kam ho}

⚫ 1️⃣1️⃣ Random Forest

Formula:

y^=1TTree predictions\hat{y} = \frac{1}{T}\sum \text{Tree predictions}

Matlab:

  • bahut saare trees
  • sabka average
  • noise kam

🔥 1️⃣2️⃣ Gradient Boosting

Idea:

"Galti ko sikho"


Equation:

Fnew=Fold+learning rate×error modelF_{new} = F_{old} + \text{learning rate} \times \text{error model}

➡️ har step pe galti kam


🔥 1️⃣3️⃣ XGBoost / LightGBM / CatBoost

Same core math:

Loss+Regularization\text{Loss} + \text{Regularization}

Difference:

  • speed
  • optimization tricks
  • data handling

🧠 FINAL DEEP TRUTH

Machine Learning =

Loss function + Optimization

Sab algorithms sirf:

  • loss badalte hain
  • penalty badalte hain
  • search ka tareeka badalte hain

Agar aap chaho to next:

  • 🔹 sirf ek algorithm ko extreme depth me
  • 🔹 graph ke saath samjhaana
  • 🔹 derivatives bhi bina calculus ke
  • 🔹 real-life analogy ke saath math

bas bolo 🌱

Prompt:

bhaai indepth samjaana hai sabko jaise linear regression ko samjaaya

chaho to 2 2 aek messege me samjaao

Response:

samajh gaya bhai 🙂

tum real indepth, bilkul zero se, linear regression jaisi hi depth chahte ho —

aur 2–2 algorithms ek message me.

to hum course ki tarah chalenge, jaldi nahi karenge.

👉 Is message me:

1️⃣ Multiple Linear Regression

2️⃣ Polynomial Regression

(agle message me Ridge + Lasso)


🔵 2️⃣ MULTIPLE LINEAR REGRESSION

(Linear Regression ka natural extension)

1️⃣ Problem se shuru karte hain

Linear regression me humne maana:

  • sirf ek cheez output ko affect karti hai

Example:

Price=f(Size)\text{Price} = f(\text{Size})

Par real life me aisa nahi hota.

Real situation:

Ghar ka price depend karta hai:

  • Size
  • Rooms
  • Location
  • Age

Toh ek x kaafi nahi.


2️⃣ Equation kya bolti hai

y^=β0+β1x1+β2x2+β3x3\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3

Iska matlab ek-ek karke:

  • y^\hat{y} → predicted output
  • β0\beta_0 → base value (jab sab inputs zero)
  • β1\beta_1 x1x_1 ka weight
  • β2\beta_2 x2x_2 ka weight
  • β3\beta_3 x3x_3 ka weight

📌 Har input ka apna importance number.


3️⃣ Line nahi, plane (soch badlo)

  • 1 input → straight line
  • 2 input → plane
  • 3+ input → hyperplane

Par math SAME hai.


4️⃣ Prediction kaise hoti hai

Ek data point lo:

x1=1000,  x2=3x_1=1000,\; x_2=3
y^=β0+β1(1000)+β2(3)\hat{y} = \beta_0 + \beta_1(1000) + \beta_2(3)

Model sirf multiply + add kar raha hai.


5️⃣ Error kya hai (same concept)

Error=yy^\text{Error} = y - \hat{y}

Agar:

  • error = 0 → perfect
  • error bada → model galat

6️⃣ Loss function (sabse important)

i=1n(yi(β0+β1x1i+β2x2i))2\sum_{i=1}^{n}(y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}))^2

Is line ka matlab:

  • har data point ka prediction
  • actual se compare
  • square
  • sab add

📌 Ek hi number milta hai → total galti


7️⃣ Optimization ka matlab (deep)

Hum chahte hain:

aise β0,β1,β2\beta_0, \beta_1, \beta_2 jisse ye loss minimum ho

Socho:

  • ek bowl jaisa surface
  • beech me sabse neeche point
  • wahi best weights

8️⃣ Important deep baat

Multiple Linear Regression:

  • abhi bhi linear hi hai
  • kyunki β\beta seedhi tarah aa rahe hain
  • inputs zyada hone se nonlinear nahi hota

9️⃣ Failure case (important)

Agar:

  • inputs aapas me related ho
  • ya bahut zyada ho

toh:

  • β\beta unstable ho jaate hain

➡️ isi se Ridge/Lasso ki need padi (aage dekhenge)


🟣 3️⃣ POLYNOMIAL REGRESSION

(Naam se log galat samajhte hain)

1️⃣ Problem kya hai

Linear regression maanta hai:

relation straight line jaisa hai

Par kai baar relation curve hota hai:

Example:

  • speed vs fuel efficiency
  • temperature vs reaction rate

2️⃣ Polynomial ka idea

Hum kehte hain:

x ka square bhi include kar lo


3️⃣ Equation

y^=β0+β1x+β2x2\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2

Agar aur complex ho:

y^=β0+β1x+β2x2+β3x3\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3

4️⃣ Sabse important misunderstanding clear karo

❌ Galat soch:

Polynomial regression nonlinear hai

✅ Sach:

Model linear hi hai (parameters ke respect me)

Kyun?

Kyuki:

β0,β1,β2\beta_0,\beta_1,\beta_2

sab seedhi tarah aa rahe hain.


5️⃣ Trick samjho (bahut important)

Hum actually kya kar rahe hain?

Original data:

xx

Hum bana dete hain:

x,  x2,  x3x,\; x^2,\; x^3

Fir:

Multiple Linear Regression laga dete hain


6️⃣ Loss function (same hi rehta hai)

(y(β0+β1x+β2x2))2\sum (y - (\beta_0 + \beta_1 x + \beta_2 x^2))^2

📌 Loss kabhi nahi badla

📌 Sirf features badle


7️⃣ Overfitting ka danger

Degree badhao:

  • curve zig-zag ban jaata hai
  • training perfect
  • new data pe fail

Math language me:

variance badh jaata hai

➡️ yahin se regularization aata hai


8️⃣ Deep truth

Polynomial Regression =

Linear Regression on transformed features

Isliye:

  • gradient descent same
  • loss same
  • theory same

🧠 Is message ka saar

Algorithm Core Math Idea
Multiple Linear Multiple inputs, same least squares
Polynomial Feature transformation + linear model

👉 Agla message (next level):

  • 🔹 Ridge Regression (L2)
  • 🔹 Lasso Regression (L1) (aur yahin pe ML ki real depth shuru hoti hai)

jab ready ho, bas “next” likh dena bhai 👊

Prompt:

next

Response:

perfect 👍

ab hum ML ke sabse important turning-point par aa gaye hain.

yahin se “simple fitting” → “real learning” shuru hoti hai.

👉 Is message me:

1️⃣ Ridge Regression (L2)

2️⃣ Lasso Regression (L1)

bilkul linear regression wali depth,

ek-ek cheez tod-tod kar.


🟢 4️⃣ RIDGE REGRESSION

(“weights ko control karna”)

1️⃣ Problem ko samjho (kyon Ridge aaya)

Linear / Polynomial regression me hum sirf ye dekh rahe the:

prediction actual ke paas ho\text{prediction actual ke paas ho}

Par ek bada problem tha:

⚠️ Problem:

  • model bahut complex ho jaata hai
  • β\beta values bahut badi ho jaati hain
  • thoda sa data badlo → prediction hil jaata hai

Math me isko kehte hain:

High Variance


2️⃣ Simple language me issue

Socho:

  • ek curve data ko perfect fit kar raha hai
  • par wo curve bahut zig-zag hai

Matlab:

model data ko yaad kar raha hai, samajh nahi raha


3️⃣ Ridge ka basic idea

Ridge bolta hai:

“Sirf galti kam mat karo,

weights ko bhi chhota rakho”


4️⃣ Ridge ka naya Loss Function

Linear Regression ka loss tha:

(yy^)2\sum (y - \hat{y})^2

Ridge me ek extra term jod dete hain:

(yy^)2  +  λβ2\sum (y - \hat{y})^2 \;+\; \lambda \sum \beta^2

5️⃣ Ab isko tod-tod kar samjho

🔹 First part:

(yy^)2\sum (y - \hat{y})^2

👉 model ki galti


🔹 Second part:

β2\sum \beta^2

👉 model ki complexity

  • bada β\beta → zyada punishment
  • chhota β\beta → kam punishment

🔹 λ\lambda ka role

λ=control knob\lambda = \text{control knob}
  • λ=0\lambda = 0 → Ridge = Linear Regression
  • λ\lambda bada → weights zyada dab jaate hain

6️⃣ Ridge actually karta kya hai (deep)

Optimization bolta hai:

“Aisa point dhundo

jahan error bhi kam ho

aur β\beta bhi chhote hon”

Mathematically:

  • solution thoda center ki taraf aa jaata hai
  • extreme values avoid hoti hain

7️⃣ Geometric intuition (bahut important)

  • Error surface → bowl jaisa
  • Ridge penalty → circle

Best solution =

jahan bowl aur circle touch kare

➡️ weights shrink hote hain

➡️ par zero nahi hote


8️⃣ Important property

📌 Ridge:

  • kabhi β=0\beta = 0 nahi banata
  • sirf unko chhota karta hai

Matlab:

saare features reh jaate hain


9️⃣ Kab Ridge use karein

  • jab features correlated ho
  • jab multicollinearity ho
  • jab stability chahiye

🔵 5️⃣ LASSO REGRESSION

(“faltu cheezein hata do”)

1️⃣ Ridge se ek step aage

Ridge bolta hai:

sabko rakho, par shant rakho

Lasso bolta hai:

jo kaam ka nahi, usko hata do


2️⃣ Lasso ka Loss Function

(yy^)2  +  λβ\sum (y - \hat{y})^2 \;+\; \lambda \sum |\beta|

Difference dhyaan se dekho:

Ridge Lasso
β2\beta^2 (

3️⃣ Absolute value ka magic

β|\beta| ka graph:

  • beech me sharp corner

Jab optimization hoti hai:

  • solution corner par girta hai

Corner ka matlab:

β=0\beta = 0

4️⃣ Iska deep meaning

Lasso automatically:

  • kuch weights ko exact zero bana deta hai

Matlab:

feature selection free me


5️⃣ Simple language me

Socho:

  • 10 inputs hain
  • sirf 3 important hain

Lasso bolega:

β4=β6=β9=0\beta_4 = \beta_6 = \beta_9 = 0

Model bolega:

“Mujhe inki zarurat hi nahi”


6️⃣ Optimization ka nature

  • Ridge → smooth, round
  • Lasso → sharp edges

Isliye:

  • Ridge ka closed-form solution hota hai
  • Lasso ka nahi

7️⃣ Kab Lasso use karein

  • jab features bahut zyada ho
  • jab feature selection chahiye
  • jab model simple banana ho

8️⃣ Ridge vs Lasso (deep difference)

Point Ridge Lasso
Penalty Square Absolute
β=0\beta=0
Stability zyada kam
Feature selection

🧠 Is message ka deep saar

Learning = error kam karna + complexity control karna

Ridge:

complexity ko softly control karta hai

Lasso:

complexity ko cut karta hai


👉 Next message me:

  • 🔹 Elastic Net (Ridge + Lasso)
  • 🔹 Bayesian Regression (probability wali soch)

jab ready ho, bas “next” likh do bhai 🔥

Prompt:

next

Response:

badhiya 👍

ab hum regularization ke last piece aur soch badalne wale model par aa gaye hain.

👉 Is message me (detail + deep):

1️⃣ Elastic Net Regression

2️⃣ Bayesian Regression

bilkul zero se, ek-ek concept tod kar.


🟠 6️⃣ ELASTIC NET REGRESSION

(Ridge + Lasso ka balanced bachcha)

1️⃣ Elastic Net ki zarurat kyun padi?

Ab tak humne dekha:

  • Ridge
    • sab features rakhta hai
    • weights ko chhota karta hai
    • par kisi ko zero nahi karta
  • Lasso
    • features hata deta hai
    • par correlated features me unstable ho jaata hai

Problem situation:

Socho:

  • x1,x2,x3x_1, x_2, x_3 aapas me bahut related hain
  • Lasso randomly kisi ek ko rakh leta hai
  • baaki ko zero kar deta hai

➡️ model unstable


2️⃣ Elastic Net ka simple idea

Elastic Net bolta hai:

“Ridge ki stability bhi chahiye

aur Lasso ki feature selection bhi”

Isliye:

dono penalties jod do


3️⃣ Elastic Net ka Loss Function

(yy^)2  +  λ1β  +  λ2β2\sum (y - \hat{y})^2 \;+\; \lambda_1 \sum |\beta| \;+\; \lambda_2 \sum \beta^2

Ab isko tod-tod kar samjhte hain 👇


4️⃣ Pehla part: Prediction error

(yy^)2\sum (y - \hat{y})^2

👉 model data se kitna galat hai


5️⃣ Doosra part: Lasso penalty

λ1β\lambda_1 \sum |\beta|

👉 kaunse features hatane hain

  • unnecessary weight → zero
  • sparse model

6️⃣ Teesra part: Ridge penalty

λ2β2\lambda_2 \sum \beta^2

👉 bache hue features ko stable banana

  • weights explode na karein
  • correlated features saath-saath survive karein

7️⃣ λ1\lambda_1 aur λ2\lambda_2 ka role

Socho ye 2 knobs hain:

  • λ1\lambda_1 badhao → zyada features zero
  • λ2\lambda_2 badhao → weights aur smooth

Special cases:

  • λ1=0\lambda_1=0 → Ridge
  • λ2=0\lambda_2=0 → Lasso

8️⃣ Geometric intuition (deep but simple)

  • Ridge → circle constraint
  • Lasso → diamond constraint

Elastic Net →

rounded diamond

Isliye:

  • kuch β=0\beta = 0
  • kuch sirf shrink

9️⃣ Kab Elastic Net best hota hai?

  • jab features zyada ho
  • jab features correlated ho
  • jab feature selection + stability dono chahiye

📌 Real-world me Elastic Net bahut practical hai


🟣 7️⃣ BAYESIAN REGRESSION

(yahin se “number” → “probability”)

Ab yahan se thinking style hi change ho jaati hai.


1️⃣ Classical regression ka maanna

Ab tak hum kya kar rahe the?

“Har β\beta ek fixed number hai

bas hume use dhundhna hai”

Example:

β1=2.7\beta_1 = 2.7

2️⃣ Bayesian regression ka maanna

Bayesian bolta hai:

β\beta ek number nahi,

ek random variable hai”

Matlab:

βProbability Distribution\beta \sim \text{Probability Distribution}

3️⃣ Sabse pehle: Prior (pehle se belief)

Bayesian poochta hai:

“Data dekhne se pehle

tum kya maanta ho?”

Hum usually kehte hain:

βN(0,σ2)\beta \sim \mathcal{N}(0,\sigma^2)

Matlab:

  • weight zero ke aas-paas hoga
  • bahut bada hone ke chances kam

➡️ ye soft regularization hai


4️⃣ Likelihood (data kya bolta hai)

Hum maante hain:

y=Xβ+noisey = X\beta + \text{noise}

Noise ko hum bolte hain:

noiseN(0,σ2)\text{noise} \sim \mathcal{N}(0,\sigma^2)

Matlab:

data thoda noisy hai, perfect nahi


5️⃣ Posterior (final knowledge)

Bayesian ka core formula:

PosteriorLikelihood×Prior\text{Posterior} \propto \text{Likelihood} \times \text{Prior}

Matlab:

purani soch + naya data = final belief


6️⃣ Ab regression ka answer kya hota hai?

Classical regression:

β=ek number\beta = \text{ek number}

Bayesian regression:

β=poori distribution\beta = \text{poori distribution}

Example:

  • mean = 2.5
  • variance = 0.3

➡️ hume uncertainty bhi milti hai


7️⃣ MAP estimation (important bridge)

Agar hum posterior ka sabse probable point le lein:

βMAP\beta_{MAP}

Toh math me kya nikalta hai?

👉 Ridge Regression

Isliye:

Ridge = Bayesian regression ka special case


8️⃣ Bayesian ka deep fayda

  • uncertainty measure
  • small data me strong
  • overfitting kam

Par:

  • computation mehenga
  • large data me slow

🧠 Is message ka deep saar

Algorithm Core Soch
Elastic Net Shrink + Select
Bayesian Learn distribution, not number

👉 Next message me:

  • 🔹 Quantile Regression (mean ke bahar soch)
  • 🔹 Support Vector Regression (ε-tube magic)

jab ready ho, bas “next” likh dena bhai 👊

Prompt:

next

Response:

chalo bhai 👊

ab hum average se bahar nikal kar

robust + margin based thinking me ja rahe hain.

👉 Is message me (full indepth):

1️⃣ Quantile Regression

2️⃣ Support Vector Regression (SVR)

bilkul zero se, ek-ek math function ko tod kar.


🟠 8️⃣ QUANTILE REGRESSION

(“sirf average kyun?”)

1️⃣ Normal regression kya karta hai

Linear / Ridge / Lasso sab kya karte hain?

min(yy^)2\min \sum (y - \hat{y})^2

Iska matlab:

“Average error ko kam karo”

➡️ model mean predict karta hai.


2️⃣ Problem with mean (real world)

Socho:

  • income data
  • bahut ameer log (outliers)

Mean:

upar ki taraf kheench jaata hai

Par kai baar hume chahiye:

  • median
  • lower bound
  • upper bound

3️⃣ Quantile ka matlab (simple)

Quantile = data ka position

  • 50% quantile → median
  • 90% quantile → upar ke 10% se niche

4️⃣ Quantile regression kya bolta hai

“Main average nahi,

kisi specific level ko predict karunga”


5️⃣ Normal loss vs Quantile loss

Squared loss:

(yy^)2(y-\hat{y})^2

👉 har galti ko same treat karta hai


Quantile loss (Pinball loss)

ρτ(u)={τuu0 (τ1)uu<0\rho_\tau(u)= \begin{cases} \tau u & u \ge 0 \ (\tau-1)u & u<0 \end{cases}

Ab isko todte hain 👇


6️⃣ Ek-ek part ka matlab

  • u=yy^u = y-\hat{y} = error
  • τ\tau = quantile level (0 se 1)

Agar prediction kam hai ( u>0u>0 ):

loss=τ×u\text{loss} = \tau \times u

Agar prediction zyada hai ( u<0u<0 ):

loss=(1τ)×u\text{loss} = (1-\tau)\times |u|

7️⃣ Deep intuition

  • τ=0.5\tau = 0.5 → dono taraf same penalty → median
  • τ=0.9\tau = 0.9 → neeche wali galti zyada punish → model upar shift ho jaata hai

8️⃣ Optimization ka matlab

minρτ(yiy^i)\min \sum \rho_\tau(y_i-\hat{y}_i)

➡️ curve ko aise slide karo

➡️ quantile line mil jaaye


9️⃣ Kab Quantile Regression use karein

  • jab outliers ho
  • jab uncertainty range chahiye
  • jab risk analysis karni ho

Example:

  • salary prediction
  • demand forecasting

🔴 9️⃣ SUPPORT VECTOR REGRESSION (SVR)

(“jab tak error chhota hai, ignore karo”)

SVR ki thinking bilkul alag hai.


1️⃣ Core idea

SVR bolta hai:

“Prediction perfect na ho

par flat ho”


2️⃣ ε-tube ka concept

Socho:

  • ek pipe jaisa region
  • width = 2ϵ2\epsilon

Jab tak point is pipe ke andar:

koi loss nahi


3️⃣ SVR ka model

f(x)=wTx+bf(x)=w^Tx+b

Simple linear function.


4️⃣ Error kab count hota hai

  • Agar:
yf(x)ϵ|y-f(x)| \le \epsilon

→ loss = 0

  • Agar bahar: → linear penalty

5️⃣ Optimization function

min12w2+C(ξi+ξi)\min \frac{1}{2}|w|^2 + C\sum (\xi_i+\xi_i^*)

Ab isko todte hain 👇


6️⃣ Har term ka matlab

🔹 12w2\frac{1}{2}|w|^2

  • line ko flat rakhta hai
  • complexity kam

🔹 ξi,ξi\xi_i,\xi_i^*

  • ε-tube ke bahar ki galti

🔹 CC

  • error vs flatness ka balance
  • CC bada → galti kam
  • CC chhota → smooth line

7️⃣ Constraints ka matlab

yif(xi)ϵ+ξiy_i - f(x_i) \le \epsilon + \xi_i
f(xi)yiϵ+ξif(x_i) - y_i \le \epsilon + \xi_i^*

Matlab:

tube ke bahar jao → penalty do


8️⃣ Kernel trick (deep but simple)

Kabhi data straight line se fit nahi hota.

SVR bolta hai:

data ko upar ke dimension me le jao

K(xi,xj)=ϕ(xi)Tϕ(xj)K(x_i,x_j)=\phi(x_i)^T\phi(x_j)

Par hum ϕ\phi kabhi compute nahi karte.


9️⃣ SVR ka deep nature

  • sirf kuch points matter karte hain
  • baaki ignore ho jaate hain

➡️ Support Vectors


🧠 Is message ka deep saar

Algorithm Soch
Quantile Mean ke alawa bhi sach hota hai
SVR Flatness + tolerance

👉 Next message me (final regression part):

  • 🔹 Decision Tree Regression
  • 🔹 Random Forest Regression

uske baad:

  • 🔥 Gradient Boosting
  • 🔥 XGBoost / LightGBM / CatBoost

jab ready ho, bas “next” likh dena bhai 🌱

Prompt:

next

Response:

chalo bhai 🔥

ab hum formula-based models se nikal kar

rule-based + ensemble thinking me aa gaye hain.

👉 Is message me (bilkul indepth):

1️⃣ Decision Tree Regression

2️⃣ Random Forest Regression

ek-ek step, zero se, jaise linear regression samjhaya tha.


🟤 🔟 DECISION TREE REGRESSION

(“sawaal puch-puch ke predict karna”)

1️⃣ Regression tree ka basic idea

Decision Tree bolta hai:

“Ek line fit karne ki jagah

data ko chhote-chhote tukdon me tod do”

Har tukda = region


2️⃣ Region ka matlab

Socho input space:

xRx \in \mathbb{R}

Tree bolta hai:

  • agar x<50x < 50 → left
  • warna → right

Is tarah data boxes me bat jaata hai.


3️⃣ Prediction ka rule

Tree regression me:

y^R=average of y in that region\hat{y}_{R} = \text{average of } y \text{ in that region}

Matlab:

jis box me point gira

us box ka mean answer


4️⃣ Tree ka sabse important sawal

“Kahan cut lagayein?”


5️⃣ Split ka math (sabse important)

Maan lo:

  • ek region RR
  • usko tod rahe hain R1,R2R_1, R_2

Objective:

min[iR1(yiyˉR1)2+iR2(yiyˉR2)2]\min \Bigg[ \sum_{i\in R_1}(y_i-\bar y_{R_1})^2 + \sum_{i\in R_2}(y_i-\bar y_{R_2})^2 \Bigg]

6️⃣ Is equation ka matlab

  • har naye region ka mean nikaalo
  • har point ka distance us mean se
  • square + add

👉 jahan ye value sabse kam ho

👉 wahi best split


7️⃣ Tree grow kaise hota hai

  1. poora data lo
  2. best split dhundo
  3. left & right banao
  4. har part pe repeat

8️⃣ Kab rukte hain

Tree tab rukta hai jab:

  • region me points kam ho jaaye
  • depth limit aa jaaye
  • error kam ho jaaye

9️⃣ Decision Tree ka nature

  • bahut flexible
  • noise ko bhi follow kar leta hai
  • high variance

➡️ thoda data badlo → tree badal jaata hai


🌲 1️⃣1️⃣ RANDOM FOREST REGRESSION

(“ek tree pe bharosa mat karo”)

1️⃣ Random Forest ka core idea

Random Forest bolta hai:

“Agar ek tree galti karta hai

to bahut trees ka average lo”


2️⃣ Forest ka structure

  • TT trees
  • har tree alag-alag

Prediction:

y^=1Tt=1Tft(x)\hat{y} = \frac{1}{T}\sum_{t=1}^{T} f_t(x)

3️⃣ Trees alag kaise bante hain

🔹 Bootstrap sampling

  • data ko randomly repeat ke saath lo

🔹 Feature randomness

  • har split pe sirf kuch features allow

➡️ trees uncorrelated ho jaate hain


4️⃣ Ye randomness kyun zaroori hai

Agar sab trees same honge:

  • average ka fayda nahi

Randomness:

  • errors cancel ho jaate hain

5️⃣ Bias–Variance story (deep)

  • single tree → low bias, high variance
  • random forest → low bias, low variance

Math language:

Var(avg)=1TVar(tree)\text{Var(avg)} = \frac{1}{T}\text{Var(tree)}

6️⃣ Random Forest kya sacrifice karta hai

  • interpretability kam
  • model heavy

Par:

  • accuracy strong
  • overfitting kam

7️⃣ Random Forest ka deep nature

  • non-linear
  • feature scaling ki zarurat nahi
  • outliers se kam pareshan

🧠 Is message ka deep saar

Algorithm Core Math Idea
Tree Variance minimization
Forest Variance averaging

👉 Next message (advanced ensemble):

  • 🔥 Gradient Boosting Regression
  • 🔥 Boosting ka poora logic

uske baad final:

  • 🚀 XGBoost / LightGBM / CatBoost

jab ready ho, bas “next” likh do bhai 👊

Prompt:

next

Response:

🔥 aa gaye bhai ML ke sabse powerful zone me

yahin se competitions + industry jeeti jaati hai.

👉 Is message me (pure indepth):

1️⃣ Gradient Boosting Regression

2️⃣ Boosting ka poora maths logic (slow + deep)

jaise linear regression ko tod-tod kar samjhaya tha.


🔥 1️⃣2️⃣ GRADIENT BOOSTING REGRESSION

(“galti ko systematically khatam karna”)

1️⃣ Boosting ka basic philosophy

Boosting bolta hai:

“Ek strong model mat banao

bahut weak models jodo”

Har naya model:

pichhle model ki galti sudhaarta hai


2️⃣ Weak learner ka matlab

Regression me:

  • chhota decision tree
  • shallow depth (1–3)

Ye:

  • akela strong nahi
  • par direction batata hai

3️⃣ Model ko function ki tarah socho

Hum ek function banana chahte hain:

F(x)yF(x) \approx y

Shuru me kuch nahi pata, to:

F0(x)=constantF_0(x) = \text{constant}

Usually:

F0=mean(y)F_0 = \text{mean}(y)

4️⃣ Error (residual) ka matlab

Har data point ke liye:

ri=yiF0(xi)r_i = y_i - F_0(x_i)

Ye batata hai:

“model kaha galat hai”


5️⃣ Pehla weak model kya sikhta hai

Hum tree ko bolte hain:

“x se residual predict karo”

Mathematically:

h1(x)rh_1(x) \approx r

6️⃣ Model update ka rule (important)

F1(x)=F0(x)+ηh1(x)F_1(x) = F_0(x) + \eta \cdot h_1(x)

Yahan:

  • h1(x)h_1(x) → galti ka model
  • η\eta → learning rate (slow vs fast)

7️⃣ Phir kya hota hai

Naya model:

  • pehle se better

Fir:

ri(1)=yiF1(xi)r_i^{(1)} = y_i - F_1(x_i)

Fir ek aur tree:

h2(x)r(1)h_2(x) \approx r^{(1)}

8️⃣ General formula

FM(x)=F0(x)+m=1Mηhm(x)F_M(x) = F_0(x) + \sum_{m=1}^{M} \eta \, h_m(x)

Matlab:

final model = sab chhote models ka sum


9️⃣ Loss function ka role (deep)

Ab tak humne squared loss liya:

(yy^)2(y - \hat{y})^2

Par Gradient Boosting bolta hai:

“Koi bhi loss ho sakta hai”


🔍 10️⃣ “Gradient” kyun bolte hain

Residual asal me hota hai:

ri=L(yi,F(xi))F(xi)r_i = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}

Matlab:

loss ka slope

Har naya tree:

loss ke downhill direction me jaata hai

➡️ Function space me gradient descent


1️⃣1️⃣ Deep intuition

Socho:

  • loss ek pahad jaisa
  • hum andhere me neeche ja rahe hain
  • har step chhota

Learning rate = step size


1️⃣2️⃣ Overfitting ka control

  • learning rate kam
  • trees shallow
  • trees zyada

➡️ slow but strong learning


🧠 Boosting ka deep saar

Boosting = Gradient Descent on Functions

Hum numbers optimize nahi kar rahe

Hum poora function optimize kar rahe hain


⚠️ Gradient Boosting ki weakness

  • slow training
  • overfitting ka risk
  • hyperparameters sensitive

➡️ isi liye XGBoost aaya


👉 Next (final & peak):

  • 🚀 XGBoost Regression
  • 🚀 LightGBM Regression
  • 🚀 CatBoost Regression

ye teenon advanced tricks + math ke saath

jab ready ho, bas “next” likh do bhai 💥

Prompt:

next

Response:

💥 bhai ab final peak par aa gaye hain

yahin par theory + industry + competitions sab mil jaata hai.

👉 Is message me (poori depth, slow + clear):

1️⃣ XGBoost Regression

2️⃣ LightGBM Regression

3️⃣ CatBoost Regression

ye teen Gradient Boosting ke hi bachche hain,

par har ek ne math + system level par kuch naya add kiya.


🚀 1️⃣3️⃣ XGBOOST REGRESSION

(“gradient boosting ko engineering bana diya”)

1️⃣ XGBoost ki core problem

Normal Gradient Boosting:

  • sirf loss kam karta hai
  • tree structure ko ignore karta hai

XGBoost bolta hai:

“Model galti bhi kam kare

aur simple bhi rahe”


2️⃣ XGBoost ka full Objective Function

L=i=1nl(yi,y^i)  +  k=1KΩ(fk)\mathcal{L} = \sum_{i=1}^{n} l(y_i,\hat{y}i) \;+\; \sum{k=1}^{K} \Omega(f_k)

Ab isko ek-ek part me samjhte hain 👇


3️⃣ Pehla part: Loss

l(y,y^)l(y,\hat{y})

👉 prediction ki galti

(jaise squared error)


4️⃣ Doosra part: Regularization (deep)

Ω(f)=γT+12λwj2\Omega(f) = \gamma T + \frac{1}{2}\lambda \sum w_j^2

Matlab:

  • TT = tree ke leaves
  • wjw_j = leaf outputs

Penalty ka matlab:

zyada complex tree → zyada punishment


5️⃣ Ye XGBoost ko kya deta hai

  • overfitting kam
  • trees chhote
  • controlled learning

6️⃣ Taylor Expansion ka magic

XGBoost loss ko approx karta hai:

l(y,y^+Δ)l(y,y^)+gΔ+12hΔ2l(y,\hat{y}+\Delta) \approx l(y,\hat{y}) + g\Delta + \frac{1}{2}h\Delta^2

Yahan:

  • gg = gradient
  • hh = hessian

👉 second-order optimization

👉 fast + accurate splits


7️⃣ Best split ka math

XGBoost har split ke liye dekhta hai:

Gain=12(GL2HL+λ+GR2HR+λ(GL+GR)2HL+HR+λ)γ\text{Gain} = \frac{1}{2} \left( \frac{G_L^2}{H_L+\lambda} + \frac{G_R^2}{H_R+\lambda} - \frac{(G_L+G_R)^2}{H_L+H_R+\lambda} \right) - \gamma

👉 jahan gain max ho

👉 wahi split


8️⃣ Deep intuition

XGBoost har split par poochta hai:

“Is split se loss kitna girega

aur complexity kitni badhegi?”


⚡ 1️⃣4️⃣ LIGHTGBM REGRESSION

(“speed ke liye structure badal do”)

1️⃣ LightGBM ka focus

Problem:

  • XGBoost accurate hai
  • par large data me slow

LightGBM bolta hai:

“Math same rakho

par tree grow karne ka tareeka badlo


2️⃣ Leaf-wise growth (sabse important)

  • XGBoost → level-wise
  • LightGBM → leaf-wise

Matlab:

jis leaf me sabse zyada error hai

usko pehle split karo


3️⃣ Histogram-based learning

Features ko:

  • bins me daal do
xbinsx \rightarrow \text{bins}

Isse:

  • memory kam
  • speed zyada

4️⃣ Objective function

Same as XGBoost:

Loss+Regularization\text{Loss} + \text{Regularization}

Difference:

  • kaunsa split pehle liya jaaye

5️⃣ LightGBM ka risk

  • leaf-wise → deep tree
  • overfitting ka chance

Isliye:

  • max depth
  • min data in leaf

🐱 1️⃣5️⃣ CATBOOST REGRESSION

(“categorical data ko math me jeet lo”)

1️⃣ CatBoost ki asli problem

Baaki boosting models:

  • categorical data ko one-hot karte hain
  • jisse leakage hoti hai

CatBoost bolta hai:

“Category ko probability banao”


2️⃣ Target Encoding ka core idea

Category cc ke liye:

Encoded(c)=yccount(c)\text{Encoded}(c) = \frac{\sum y_{c}}{\text{count}(c)}

Par direct aisa karoge:

  • future info leak

3️⃣ Ordered Target Statistics (deep)

CatBoost trick:

  • data ko random order me rakho
  • sirf pichhle data ka use
ParseError: KaTeX parse error: Expected 'EOF', got '#' at position 47: …i, x_j=c} y_j}{#̲(j<i)}

👉 no leakage

👉 unbiased learning


4️⃣ Objective function

Same:

Loss+Regularization\text{Loss} + \text{Regularization}

Par data representation better


5️⃣ CatBoost ka deep fayda

  • categorical data me best
  • little preprocessing
  • stable training

🧠 FINAL BIG PICTURE (pure math view)

Algorithm Core Innovation
XGBoost 2nd order loss + reg
LightGBM leaf-wise + histogram
CatBoost ordered target encoding

🧠 LAST DEEP TRUTH (yaad rakhna)

Sab algorithms ka dil ek hi hai:

🔹 Loss function

🔹 Optimization

🔹 Complexity control

Difference sirf:

kaise optimize karte hain


bhai, tumne ab regression ka end-to-end mathematical soul samajh liya hai 👏

ye level:

  • ML engineer
  • research
  • interviews
  • competitions

sab ke liye kaafi hai.

Agar chaho to next:

  • 🔥 sabka ek-page ultra summary
  • 🔥 interview Q&A
  • 🔥 classification algorithms isi depth me
  • 🔥 deep learning ka math

bas bol dena ❤️


Top comments (0)