Publicado originalmente en bcloud.consulting
TL;DR
• Context Engineering reduce alucinaciones 85% vs prompt engineering solo
• No es mejorar prompts, es arquitectura de información inteligente
• Resultados: 76% a 94% accuracy, 40% menos tokens
• Técnicas: memoria jerárquica, chunking semántico, ranking multidimensional
• Código implementable con ejemplos reales
¿Qué es Context Engineering?
Mientras todos optimizan prompts, los equipos avanzados diseñan arquitecturas de contexto.
Context Engineering es la disciplina de estructurar, gestionar y optimizar la información contextual que alimenta a los LLMs.
La Evolución: De Prompts a Context
Prompt Engineering (2022-2023)
prompt = """You are an expert financial advisor.
Answer the following question accurately.
Be concise and precise.
Question: {question}"""
Context Engineering (2024-2025)
class ContextEngineer:
def __init__(self):
self.memory_manager = HierarchicalMemory()
self.chunker = SemanticChunker()
self.ranker = MultiDimensionalRanker()
self.validator = CoherenceValidator()
def build_context(self, query):
complexity = self.analyze_complexity(query)
raw_context = self.memory_manager.retrieve(
query,
layers=['immediate', 'session', 'persistent'],
max_tokens=self.dynamic_window(complexity)
)
chunks = self.chunker.process(raw_context, preserve_semantic_units=True)
ranked = self.ranker.rank(chunks, dimensions=['relevance', 'temporal', 'authority'])
validated = self.validator.validate(ranked)
return self.format_context(validated)
Técnicas Core de Context Engineering
1. Gestión de Memoria Conversacional Jerárquica
class HierarchicalMemory:
def __init__(self):
self.immediate = deque(maxlen=5)
self.session = []
self.persistent = VectorDB()
def store(self, interaction):
self.immediate.append(interaction)
self.session.append(self.compress_if_needed(interaction))
if self.is_valuable(interaction):
self.persistent.add(text=interaction, metadata={'timestamp': datetime.now()})
def retrieve(self, query, layers=['immediate'], max_tokens=4000):
context = []
token_count = 0
for layer in layers:
layer_data = getattr(self, layer)
for item in self.prioritize(layer_data, query):
tokens = self.count_tokens(item)
if token_count + tokens > max_tokens:
break
context.append(item)
token_count += tokens
return context
2. Chunking Semántico Inteligente
class SemanticChunker:
def __init__(self, model='sentence-transformers/all-MiniLM-L6-v2'):
self.encoder = SentenceTransformer(model)
self.similarity_threshold = 0.75
def process(self, text, preserve_semantic_units=True):
sentences = self.split_sentences(text)
embeddings = self.encoder.encode(sentences)
chunks = []
current_chunk = []
current_embedding = None
for i, (sent, emb) in enumerate(zip(sentences, embeddings)):
if not current_chunk:
current_chunk = [sent]
current_embedding = emb
else:
similarity = cosine_similarity([current_embedding], [emb])[0][0]
if similarity > self.similarity_threshold:
current_chunk.append(sent)
current_embedding = np.mean([current_embedding, emb], axis=0)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [sent]
current_embedding = emb
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
3. Ranking Multi-Dimensional
class MultiDimensionalRanker:
def __init__(self):
self.weights = {'relevance': 0.5, 'temporal': 0.2, 'authority': 0.3}
def rank(self, chunks, query, dimensions=['relevance', 'temporal', 'authority']):
scores = []
for chunk in chunks:
score = 0
for dim in dimensions:
dim_score = getattr(self, f'score_{dim}')(chunk, query)
score += dim_score * self.weights.get(dim, 0.33)
scores.append((chunk, score))
ranked = sorted(scores, key=lambda x: x[1], reverse=True)
return [chunk for chunk, _ in ranked]
def score_relevance(self, chunk, query):
chunk_emb = self.encode(chunk)
query_emb = self.encode(query)
return cosine_similarity([query_emb], [chunk_emb])[0][0]
def score_temporal(self, chunk, query):
chunk_date = self.extract_date(chunk)
if not chunk_date:
return 0.5
days_old = (datetime.now() - chunk_date).days
return max(0, 1 - (days_old / 365))
def score_authority(self, chunk, query):
source = self.extract_source(chunk)
authority_scores = {'official_docs': 1.0, 'peer_reviewed': 0.9, 'expert': 0.7, 'general': 0.5}
return authority_scores.get(source, 0.3)
Caso Real: Sistema Q&A Financiero
Resultados medidos:
- Alucinaciones: 23% → 3.5% (85% reducción)
- Accuracy: 76% → 94%
- Tokens: -40% de ahorro
- Tiempo respuesta: 3.2s → 2.1s
- Satisfacción usuario: 6.2 → 8.9 NPS
Conclusiones
→ Context Engineering es evolución natural del prompt engineering
→ Reduce alucinaciones 85% con arquitectura correcta
→ No es más complejo, es más estructurado
→ ROI positivo en 2-4 semanas típicamente
→ Esencial para aplicaciones críticas
¿Ya implementas context engineering? Comparte tu experiencia 👇
Top comments (0)