The Performance Crisis
Your Jenkins pipeline is a bottleneck:
- 45 minutes to complete a single pipeline run
- 2 deployments per day maximum (developers waiting hours for feedback)
- High failure rate due to flaky tests
- Resource contention on build servers (queues backing up)
The business impact? Slow feature delivery, frustrated developers, and deployment bottlenecks.
Requirements:
- Reduce pipeline time to under 15 minutes (70% reduction!)
- Enable multiple deployments per day
- Improve reliability (reduce flaky test failures)
- Maintain security and quality gates
In this article, I'll walk through optimizing a CI/CD pipeline on AWS, covering parallelization, test optimization, caching strategies, infrastructure improvements, and monitoring.
Current State Analysis
Identifying Bottlenecks
Typical 45-Minute Pipeline Breakdown:
Source Checkout: 2 min
Dependency Install: 8 min ← Bottleneck
Unit Tests: 12 min ← Can parallelize
Integration Tests: 15 min ← Can parallelize
E2E Tests: 20 min ← Major bottleneck
Security Scan: 5 min ← Can parallelize
Build Artifact: 3 min
Deploy: 2 min
─────────────────────────────
Total: 45 min
Key Issues:
- Sequential execution (everything runs one after another)
- No caching (dependencies downloaded every time)
- Slow test execution (not optimized)
- Resource constraints (single build server)
Solution Architecture
Optimized Pipeline Design
┌─────────────────────────────────────────────────────────┐
│ Source Stage │
│ (CodeCommit/GitHub) │
└────────────────────┬────────────────────────────────────┘
│
┌────────────┴────────────┐
│ │
┌───────▼────────┐ ┌─────────▼──────────┐
│ Build Stage │ │ Security Scan │ ← Parallel
│ (Parallel) │ │ (Parallel) │
└───────┬────────┘ └─────────┬──────────┘
│ │
└────────────┬─────────────┘
│
┌────────────┴────────────┐
│ │
┌───────▼────────┐ ┌─────────▼──────────┐
│ Unit Tests │ │ Integration Tests │ ← Parallel
│ (Parallel) │ │ (Parallel) │
└───────┬────────┘ └─────────┬──────────┘
│ │
└────────────┬─────────────┘
│
┌────────────┴────────────┐
│ │
┌───────▼────────┐ ┌─────────▼──────────┐
│ E2E Tests │ │ Build Artifact │ ← Parallel
│ (Optimized) │ │ (Cached) │
└───────┬────────┘ └─────────┬──────────┘
│ │
└────────────┬─────────────┘
│
┌──────▼──────┐
│ Deploy │
└─────────────┘
Target: Under 15 Minutes
Phase 1: Parallelization Strategy
AWS CodePipeline with Parallel Actions
Pipeline Definition:
{
"pipeline": {
"name": "payment-app-optimized-pipeline",
"stages": [
{
"name": "Source",
"actions": [{
"name": "SourceAction",
"actionTypeId": {
"category": "Source",
"owner": "AWS",
"provider": "CodeCommit",
"version": "1"
},
"outputArtifacts": [{"name": "SourceOutput"}]
}]
},
{
"name": "BuildAndTest",
"actions": [
{
"name": "Build",
"actionTypeId": {
"category": "Build",
"owner": "AWS",
"provider": "CodeBuild",
"version": "1"
},
"inputArtifacts": [{"name": "SourceOutput"}],
"outputArtifacts": [{"name": "BuildOutput"}],
"configuration": {
"ProjectName": "payment-app-build"
}
},
{
"name": "SecurityScan",
"runOrder": 1,
"actionTypeId": {
"category": "Build",
"owner": "AWS",
"provider": "CodeBuild",
"version": "1"
},
"inputArtifacts": [{"name": "SourceOutput"}],
"outputArtifacts": [{"name": "SecurityScanOutput"}],
"configuration": {
"ProjectName": "payment-app-security-scan"
}
}
]
},
{
"name": "Test",
"actions": [
{
"name": "UnitTests",
"runOrder": 1,
"actionTypeId": {
"category": "Test",
"owner": "AWS",
"provider": "CodeBuild",
"version": "1"
},
"inputArtifacts": [{"name": "BuildOutput"}],
"outputArtifacts": [{"name": "UnitTestOutput"}],
"configuration": {
"ProjectName": "payment-app-unit-tests"
}
},
{
"name": "IntegrationTests",
"runOrder": 1,
"actionTypeId": {
"category": "Test",
"owner": "AWS",
"provider": "CodeBuild",
"version": "1"
},
"inputArtifacts": [{"name": "BuildOutput"}],
"outputArtifacts": [{"name": "IntegrationTestOutput"}],
"configuration": {
"ProjectName": "payment-app-integration-tests"
}
}
]
},
{
"name": "E2ETest",
"actions": [{
"name": "E2ETests",
"actionTypeId": {
"category": "Test",
"owner": "AWS",
"provider": "CodeBuild",
"version": "1"
},
"inputArtifacts": [{"name": "BuildOutput"}],
"configuration": {
"ProjectName": "payment-app-e2e-tests"
}
}]
},
{
"name": "Deploy",
"actions": [{
"name": "DeployToStaging",
"actionTypeId": {
"category": "Deploy",
"owner": "AWS",
"provider": "ECS",
"version": "1"
},
"inputArtifacts": [{"name": "BuildOutput"}],
"configuration": {
"ClusterName": "payment-staging",
"ServiceName": "payment-service"
}
}]
}
]
}
}
Parallel Test Execution
Split Tests by Category:
# test-runner.py
import subprocess
import sys
import os
def run_tests_in_parallel():
"""Run tests in parallel based on category"""
test_categories = {
'unit': 'tests/unit',
'integration': 'tests/integration',
'e2e': 'tests/e2e'
}
processes = []
for category, test_path in test_categories.items():
# Run each category in parallel
cmd = [
'pytest',
test_path,
f'--junitxml=test-results-{category}.xml',
'--maxfail=5', # Fail fast
'-n', 'auto' # Parallel execution within category
]
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
processes.append((category, process))
# Wait for all to complete
results = {}
for category, process in processes:
stdout, stderr = process.communicate()
results[category] = {
'returncode': process.returncode,
'stdout': stdout.decode(),
'stderr': stderr.decode()
}
# Check results
failed = [cat for cat, res in results.items() if res['returncode'] != 0]
if failed:
print(f"❌ Tests failed in: {', '.join(failed)}")
sys.exit(1)
print("✅ All tests passed")
return 0
if __name__ == '__main__':
sys.exit(run_tests_in_parallel())
CodeBuild Buildspec for Parallel Tests:
# buildspec-tests.yml
version: 0.2
phases:
install:
runtime-versions:
python: 3.9
nodejs: 18
commands:
- echo Installing dependencies...
- pip install -r requirements.txt
- npm ci
pre_build:
commands:
- echo Setting up test environment...
- |
# Start test dependencies in background
docker-compose up -d postgres redis
sleep 10 # Wait for services to be ready
build:
commands:
- echo Running tests in parallel...
- |
# Run unit and integration tests in parallel
python test-runner.py &
INTEGRATION_PID=$!
# Run unit tests separately for faster feedback
pytest tests/unit --junitxml=unit-results.xml -n auto &
UNIT_PID=$!
# Wait for both
wait $UNIT_PID
UNIT_EXIT=$?
wait $INTEGRATION_PID
INTEGRATION_EXIT=$?
if [ $UNIT_EXIT -ne 0 ] || [ $INTEGRATION_EXIT -ne 0 ]; then
echo "Tests failed"
exit 1
fi
post_build:
commands:
- echo Uploading test results...
- |
aws s3 cp unit-results.xml s3://test-results/payment-app/unit-${CODEBUILD_BUILD_ID}.xml
aws s3 cp integration-results.xml s3://test-results/payment-app/integration-${CODEBUILD_BUILD_ID}.xml
artifacts:
files:
- '**/*'
reports:
unit-tests:
files:
- 'unit-results.xml'
integration-tests:
files:
- 'integration-results.xml'
Phase 2: Test Optimization
Test Categorization Strategy
Fast Tests (Run First):
# tests/unit/test_fast.py
import pytest
@pytest.mark.fast
def test_calculate_total():
"""Fast unit test - runs in < 100ms"""
assert calculate_total([1, 2, 3]) == 6
@pytest.mark.fast
def test_validate_email():
"""Fast validation test"""
assert validate_email("test@example.com") == True
Slow Tests (Run After Fast Pass):
# tests/integration/test_slow.py
import pytest
@pytest.mark.slow
@pytest.mark.integration
def test_database_transaction():
"""Slow integration test - requires database"""
# Test implementation
pass
@pytest.mark.slow
@pytest.mark.e2e
def test_full_payment_flow():
"""Slow E2E test - requires full stack"""
# Test implementation
pass
Pytest Configuration:
# pytest.ini
[pytest]
markers =
fast: Fast tests (< 100ms)
slow: Slow tests (> 1s)
unit: Unit tests
integration: Integration tests
e2e: End-to-end tests
# Run fast tests first
testpaths = tests
python_files = test_*.py
python_classes = Test*
python_functions = test_*
# Parallel execution
addopts =
-n auto
-m "not slow" # Skip slow tests in initial run
--maxfail=5
--tb=short
Test Execution Strategy:
#!/bin/bash
# run-tests-optimized.sh
echo "Phase 1: Running fast tests..."
pytest -m "fast" --maxfail=5 -n auto
if [ $? -ne 0 ]; then
echo "❌ Fast tests failed, stopping pipeline"
exit 1
fi
echo "Phase 2: Running slow tests..."
pytest -m "slow" --maxfail=3 -n 2 # Fewer parallel for slow tests
if [ $? -ne 0 ]; then
echo "❌ Slow tests failed"
exit 1
fi
echo "✅ All tests passed"
Test Flakiness Reduction
Retry Strategy for Flaky Tests:
# conftest.py
import pytest
from pytest_retry import retry
@pytest.fixture(autouse=True)
def setup_test_environment():
"""Setup test environment with retries"""
yield
# Cleanup
# Retry decorator for known flaky tests
@pytest.mark.flaky(reruns=3, reruns_delay=2)
def test_external_api_call():
"""Test that sometimes fails due to network issues"""
# Test implementation
pass
Test Isolation:
# tests/conftest.py
import pytest
import asyncio
@pytest.fixture(scope="function")
def isolated_database():
"""Create isolated database for each test"""
# Create temporary database
db = create_test_database()
yield db
# Cleanup
db.drop()
@pytest.fixture(scope="function")
def clean_cache():
"""Clear cache before each test"""
cache.clear()
yield
cache.clear()
Test Data Management:
# tests/fixtures.py
import pytest
from faker import Faker
fake = Faker()
@pytest.fixture
def sample_customer():
"""Generate sample customer data"""
return {
'id': fake.uuid4(),
'name': fake.name(),
'email': fake.email(),
'created_at': fake.date_time()
}
@pytest.fixture
def sample_transaction(sample_customer):
"""Generate sample transaction"""
return {
'id': fake.uuid4(),
'customer_id': sample_customer['id'],
'amount': fake.pydecimal(left_digits=3, right_digits=2, positive=True),
'status': 'pending'
}
E2E Test Optimization
Selective E2E Testing:
# Only run E2E tests for critical paths
E2E_TEST_PATHS = [
'tests/e2e/test_payment_flow.py::test_successful_payment',
'tests/e2e/test_payment_flow.py::test_payment_failure',
'tests/e2e/test_user_registration.py::test_new_user_signup'
]
# Run subset of E2E tests
pytest ${E2E_TEST_PATHS[@]} --maxfail=1
E2E Test Parallelization with Test Containers:
# docker-compose.test.yml
version: '3.8'
services:
test-runner-1:
build: .
command: pytest tests/e2e/test_payment_flow.py
environment:
- TEST_ENV=staging-1
test-runner-2:
build: .
command: pytest tests/e2e/test_user_flow.py
environment:
- TEST_ENV=staging-2
test-runner-3:
build: .
command: pytest tests/e2e/test_admin_flow.py
environment:
- TEST_ENV=staging-3
Phase 3: Caching and Dependency Management
CodeBuild Caching
Enable Local Caching:
{
"cache": {
"type": "LOCAL",
"modes": [
"LOCAL_DOCKER_LAYER_CACHE",
"LOCAL_SOURCE_CACHE",
"LOCAL_CUSTOM_CACHE"
]
}
}
Dependency Caching:
# buildspec-with-cache.yml
version: 0.2
cache:
paths:
- 'node_modules/**/*'
- '.venv/**/*'
- '.m2/**/*'
phases:
install:
commands:
- echo Restoring cache...
- |
# Python dependencies
if [ -d ".venv" ]; then
echo "Using cached Python virtual environment"
else
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
fi
- |
# Node.js dependencies
if [ -d "node_modules" ]; then
echo "Using cached node_modules"
else
npm ci --prefer-offline --no-audit
fi
- |
# Maven dependencies (Java)
if [ -d ".m2" ]; then
echo "Using cached Maven repository"
else
mvn dependency:go-offline
fi
build:
commands:
- echo Building application...
- npm run build
- mvn package -DskipTests
Docker Layer Caching
Optimize Dockerfile for Caching:
# Stage 1: Dependencies (cached if package files don't change)
FROM node:18-slim AS deps
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production && \
npm cache clean --force
# Stage 2: Build (cached if source doesn't change)
FROM node:18-slim AS builder
WORKDIR /app
COPY --from=deps /app/node_modules ./node_modules
COPY . .
RUN npm run build
# Stage 3: Runtime (minimal)
FROM node:18-slim
WORKDIR /app
COPY --from=builder /app/dist ./dist
COPY --from=deps /app/node_modules ./node_modules
CMD ["node", "dist/index.js"]
CodeBuild Docker Caching:
# buildspec-docker-cache.yml
version: 0.2
phases:
pre_build:
commands:
- echo Logging in to Amazon ECR...
- aws ecr get-login-password --region $AWS_DEFAULT_REGION | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com
build:
commands:
- echo Building Docker image with cache...
- |
# Pull previous image for layer caching
docker pull $IMAGE_REPO_NAME:latest || true
- |
# Build with cache
docker build \
--cache-from $IMAGE_REPO_NAME:latest \
-t $IMAGE_REPO_NAME:$IMAGE_TAG \
-t $IMAGE_REPO_NAME:latest \
.
post_build:
commands:
- echo Pushing image...
- docker push $IMAGE_REPO_NAME:$IMAGE_TAG
- docker push $IMAGE_REPO_NAME:latest
S3 Caching for Large Artifacts
import boto3
import hashlib
import os
s3 = boto3.client('s3')
CACHE_BUCKET = 'payment-app-build-cache'
def get_cache_key(file_path):
"""Generate cache key from file hash"""
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
return f"cache/{file_path}/{file_hash}"
def restore_from_cache(file_path, cache_key):
"""Restore file from S3 cache"""
try:
s3.download_file(CACHE_BUCKET, cache_key, file_path)
print(f"✅ Restored {file_path} from cache")
return True
except s3.exceptions.NoSuchKey:
print(f"Cache miss for {file_path}")
return False
def save_to_cache(file_path, cache_key):
"""Save file to S3 cache"""
try:
s3.upload_file(file_path, CACHE_BUCKET, cache_key)
print(f"✅ Saved {file_path} to cache")
except Exception as e:
print(f"Failed to save cache: {e}")
# Usage in build script
if restore_from_cache('node_modules.tar.gz', get_cache_key('package.json')):
tar -xzf node_modules.tar.gz
else:
npm ci
tar -czf node_modules.tar.gz node_modules
save_to_cache('node_modules.tar.gz', get_cache_key('package.json'))
Phase 4: Infrastructure Improvements
CodeBuild Compute Optimization
Use Larger Instances for Faster Builds:
# Update CodeBuild project to use larger instances
aws codebuild update-project \
--name payment-app-build \
--compute-type BUILD_GENERAL1_LARGE # 8 vCPU, 15 GB RAM
# For very large builds
aws codebuild update-project \
--name payment-app-build \
--compute-type BUILD_GENERAL1_2XLARGE # 16 vCPU, 32 GB RAM
Auto-Scaling Build Fleet:
import boto3
codebuild = boto3.client('codebuild')
def create_fleet_for_parallel_builds():
"""Create build fleet for parallel execution"""
# Create fleet with multiple instances
codebuild.create_fleet(
name='payment-app-fleet',
baseCapacity=2,
environmentType='LINUX_CONTAINER',
computeType='BUILD_GENERAL1_LARGE',
image='aws/codebuild/standard:5.0',
fleetServiceRole='arn:aws:iam::account:role/CodeBuildFleetRole'
)
# Use fleet in project
codebuild.update_project(
name='payment-app-build',
fleet={
'fleetArn': 'arn:aws:codebuild:region:account:fleet/payment-app-fleet'
}
)
ECS Build Agents (Alternative to CodeBuild)
ECS Task for Builds:
{
"family": "build-agent",
"containerDefinitions": [
{
"name": "build-container",
"image": "aws/codebuild/standard:5.0",
"memory": 8192,
"cpu": 4096,
"environment": [
{"name": "AWS_REGION", "value": "us-east-1"}
]
}
],
"requiresCompatibilities": ["FARGATE"],
"networkMode": "awsvpc"
}
Auto-Scale Build Agents:
import boto3
ecs = boto3.client('ecs')
application_autoscaling = boto3.client('application-autoscaling')
def setup_build_agent_autoscaling():
"""Setup auto-scaling for ECS build agents"""
# Register scalable target
application_autoscaling.register_scalable_target(
ServiceNamespace='ecs',
ResourceId='service/build-cluster/build-agent-service',
ScalableDimension='ecs:service:DesiredCount',
MinCapacity=1,
MaxCapacity=10
)
# Create scaling policy based on queue depth
application_autoscaling.put_scaling_policy(
ServiceNamespace='ecs',
ResourceId='service/build-cluster/build-agent-service',
ScalableDimension='ecs:service:DesiredCount',
PolicyName='scale-on-queue-depth',
PolicyType='TargetTrackingScaling',
TargetTrackingScalingPolicyConfiguration={
'CustomizedMetricSpecification': {
'MetricName': 'ApproximateNumberOfMessagesVisible',
Namespace='AWS/SQS',
Statistic='Average',
Unit='Count'
},
'TargetValue': 5.0, # Scale when queue has 5+ messages
'ScaleInCooldown': 300,
'ScaleOutCooldown': 60
}
)
Network Optimization
VPC Endpoints for Faster S3 Access:
# Create VPC endpoint for S3 (faster than internet)
aws ec2 create-vpc-endpoint \
--vpc-id vpc-12345678 \
--service-name com.amazonaws.us-east-1.s3 \
--route-table-ids rtb-12345678
# Create VPC endpoint for ECR
aws ec2 create-vpc-endpoint \
--vpc-id vpc-12345678 \
--service-name com.amazonaws.us-east-1.ecr.dkr \
--vpc-endpoint-type Interface \
--subnet-ids subnet-123 subnet-456 \
--security-group-ids sg-12345678
Phase 5: Monitoring and Metrics
Pipeline Metrics Dashboard
import boto3
from datetime import datetime, timedelta
codebuild = boto3.client('codebuild')
cloudwatch = boto3.client('cloudwatch')
def get_pipeline_metrics():
"""Collect pipeline performance metrics"""
# Get recent builds
builds = codebuild.batch_get_builds(
ids=get_recent_build_ids()
)
metrics = {
'total_builds': len(builds['builds']),
'successful_builds': len([b for b in builds['builds'] if b['buildStatus'] == 'SUCCEEDED']),
'failed_builds': len([b for b in builds['builds'] if b['buildStatus'] == 'FAILED']),
'avg_duration': calculate_avg_duration(builds['builds']),
'p95_duration': calculate_p95_duration(builds['builds']),
'p99_duration': calculate_p99_duration(builds['builds'])
}
return metrics
def calculate_avg_duration(builds):
"""Calculate average build duration"""
durations = []
for build in builds:
if build.get('endTime') and build.get('startTime'):
duration = (build['endTime'] - build['startTime']).total_seconds()
durations.append(duration)
return sum(durations) / len(durations) if durations else 0
def publish_metrics_to_cloudwatch(metrics):
"""Publish metrics to CloudWatch"""
cloudwatch.put_metric_data(
Namespace='PaymentApp/CI-CD',
MetricData=[
{
'MetricName': 'PipelineDuration',
'Value': metrics['avg_duration'],
'Unit': 'Seconds',
'Timestamp': datetime.utcnow()
},
{
'MetricName': 'PipelineSuccessRate',
'Value': (metrics['successful_builds'] / metrics['total_builds']) * 100,
'Unit': 'Percent',
'Timestamp': datetime.utcnow()
}
]
)
CloudWatch Dashboard
def create_pipeline_dashboard():
"""Create CloudWatch dashboard for pipeline metrics"""
dashboard = {
"widgets": [
{
"type": "metric",
"properties": {
"metrics": [
["PaymentApp/CI-CD", "PipelineDuration", {"stat": "Average"}],
[".", "PipelineDuration", {"stat": "p95"}],
[".", "PipelineDuration", {"stat": "p99"}]
],
"period": 300,
"stat": "Average",
"region": "us-east-1",
"title": "Pipeline Duration"
}
},
{
"type": "metric",
"properties": {
"metrics": [
["PaymentApp/CI-CD", "PipelineSuccessRate", {"stat": "Average"}],
["AWS/CodeBuild", "Builds", {"stat": "Sum", "dimensions": [{"Name": "ProjectName", "Value": "payment-app-build"}]}]
],
"period": 300,
"stat": "Average",
"region": "us-east-1",
"title": "Pipeline Success Rate"
}
},
{
"type": "log",
"properties": {
"query": "SOURCE '/aws/codebuild/payment-app-build' | fields @timestamp, @message\n| filter @message like /ERROR/\n| sort @timestamp desc\n| limit 100",
"region": "us-east-1",
"title": "Build Errors"
}
}
]
}
cloudwatch.put_dashboard(
DashboardName='CI-CD-Pipeline',
DashboardBody=json.dumps(dashboard)
)
Build Time Breakdown Analysis
def analyze_build_time_breakdown(build_id):
"""Analyze time spent in each phase"""
# Get build logs
logs = codebuild.batch_get_builds(ids=[build_id])
build = logs['builds'][0]
# Parse CloudWatch Logs for timing
log_group = f"/aws/codebuild/{build['projectName']}"
# Extract phase timings from logs
phases = {
'install': 0,
'pre_build': 0,
'build': 0,
'post_build': 0
}
# Query CloudWatch Logs Insights
logs_client = boto3.client('logs')
response = logs_client.start_query(
logGroupName=log_group,
startTime=int((build['startTime'] - timedelta(minutes=1)).timestamp()),
endTime=int((build['endTime'] + timedelta(minutes=1)).timestamp()),
queryString="""
fields @timestamp, @message
| filter @message like /PHASE/
| stats count() by @message
"""
)
# Process results to calculate phase durations
# (Implementation depends on log format)
return phases
Alerts for Pipeline Issues
def create_pipeline_alerts():
"""Create CloudWatch alarms for pipeline issues"""
alarms = [
{
'AlarmName': 'pipeline-duration-too-long',
'MetricName': 'PipelineDuration',
'Namespace': 'PaymentApp/CI-CD',
'Statistic': 'Average',
'Period': 300,
'EvaluationPeriods': 2,
'Threshold': 900, # 15 minutes
'ComparisonOperator': 'GreaterThanThreshold'
},
{
'AlarmName': 'pipeline-failure-rate-high',
'MetricName': 'PipelineSuccessRate',
'Namespace': 'PaymentApp/CI-CD',
'Statistic': 'Average',
'Period': 3600,
'EvaluationPeriods': 1,
'Threshold': 90, # Less than 90% success rate
'ComparisonOperator': 'LessThanThreshold'
}
]
for alarm in alarms:
cloudwatch.put_metric_alarm(**alarm)
print(f"Created alarm: {alarm['AlarmName']}")
Optimized Pipeline Timeline
Before Optimization
Source: 2 min
Dependencies: 8 min
Build: 5 min
Unit Tests: 12 min
Integration: 15 min
E2E: 20 min
Security: 5 min
Deploy: 2 min
─────────────────────
Total: 45 min
After Optimization
Source: 2 min
Build + Security (parallel): 5 min ← Was 13 min
Unit + Integration (parallel): 8 min ← Was 27 min
E2E (optimized): 6 min ← Was 20 min
Deploy: 2 min
─────────────────────────────────────
Total: 13 min ← Was 45 min (71% reduction!)
Implementation Checklist
Week 1: Setup and Configuration
- Create optimized CodePipeline
- Configure CodeBuild projects with caching
- Set up parallel test execution
- Enable CloudWatch monitoring
Week 2: Test Optimization
- Categorize tests (fast/slow)
- Implement test retry strategy
- Optimize E2E tests
- Reduce flaky tests
Week 3: Caching Implementation
- Enable CodeBuild local caching
- Implement Docker layer caching
- Set up S3 caching for large artifacts
- Verify cache hit rates
Week 4: Infrastructure Improvements
- Upgrade to larger CodeBuild instances
- Set up VPC endpoints
- Configure auto-scaling build agents
- Optimize network configuration
Week 5: Monitoring and Validation
- Create CloudWatch dashboards
- Set up alerts
- Validate pipeline performance
- Document improvements
Success Metrics
Target Metrics
target_metrics = {
'pipeline_duration_minutes': 15, # Target: < 15 minutes
'success_rate_percent': 95, # Target: > 95%
'cache_hit_rate_percent': 80, # Target: > 80%
'parallel_execution_percent': 60, # Target: 60% of pipeline parallel
'deployments_per_day': 5, # Target: 5+ deployments per day
'developer_feedback_time_minutes': 15 # Target: < 15 minutes
}
Measuring Success
def measure_pipeline_improvement():
"""Compare before and after metrics"""
before = {
'avg_duration': 45, # minutes
'success_rate': 85, # percent
'deployments_per_day': 2
}
after = {
'avg_duration': 13, # minutes
'success_rate': 96, # percent
'deployments_per_day': 5
}
improvements = {
'duration_reduction': ((before['avg_duration'] - after['avg_duration']) / before['avg_duration']) * 100,
'success_rate_improvement': after['success_rate'] - before['success_rate'],
'deployment_frequency_increase': ((after['deployments_per_day'] - before['deployments_per_day']) / before['deployments_per_day']) * 100
}
print(f"Duration reduction: {improvements['duration_reduction']:.1f}%")
print(f"Success rate improvement: {improvements['success_rate_improvement']:.1f}%")
print(f"Deployment frequency increase: {improvements['deployment_frequency_increase']:.1f}%")
return improvements
Best Practices Summary
Do's
- Parallelize everything possible (tests, builds, scans)
- Cache aggressively (dependencies, Docker layers, artifacts)
- Run fast tests first (fail fast on critical issues)
- Optimize test execution (parallel, selective, isolated)
- Use larger build instances for faster execution
- Monitor pipeline metrics continuously
- Reduce flaky tests (retry, isolate, fix root causes)
- Optimize Docker builds (layer caching, multi-stage)
Don'ts
- Don't run tests sequentially when they can run in parallel
- Don't skip caching (huge time savings)
- Don't run all E2E tests on every commit
- Don't ignore flaky tests (fix or remove them)
- Don't use small build instances for large builds
- Don't deploy without metrics (measure everything)
- Don't ignore build time breakdown (identify bottlenecks)
Conclusion
Optimizing a CI/CD pipeline from 45 minutes to under 15 minutes requires a systematic approach:
- Parallelization reduces total time by running tasks concurrently
- Test optimization focuses on fast feedback and reliability
- Caching eliminates redundant work (dependencies, Docker layers)
- Infrastructure improvements provide more compute power
- Monitoring ensures continuous optimization
The result? A fast, reliable pipeline that enables multiple deployments per day, improves developer experience, and maintains security and quality gates.
Top comments (0)