The Challenge
Black Friday is coming in 8 weeks, and your payment platform needs to handle a massive traffic spike:
- Normal load: 500 transactions/second
- Expected peak: 5,000 transactions/second (10x increase!)
- Current capacity: Only 1,500 transactions/second
- Budget constraint: Minimize costs and auto-scale down after the event
- Requirement: Zero impact on current service levels during preparation
This isn't just about adding more servers. It requires a comprehensive scaling strategy across the entire stack: application layer, database, caching, networking, and monitoring.
In this article, I'll walk through a complete AWS-based scaling strategy that handles the 10x traffic spike while optimizing costs and maintaining security and compliance.
Scaling Strategy Overview
Multi-Layer Approach
Scaling for a 10x traffic spike requires addressing every layer:
┌─────────────────────────────────────┐
│ Application Load Balancer (ALB) │ ← Distribute traffic
├─────────────────────────────────────┤
│ Application Tier (Auto-Scaling) │ ← Horizontal scaling
├─────────────────────────────────────┤
│ Caching Layer (ElastiCache) │ ← Reduce DB load
├─────────────────────────────────────┤
│ Database Tier (RDS + Replicas) │ ← Read replicas + pooling
└─────────────────────────────────────┘
Key Principles
- Horizontal Scaling: Add more instances, not bigger ones
- Cost Optimization: Use Reserved Instances for baseline, On-Demand for peak
- Predictive Scaling: Pre-scale before traffic arrives
- Comprehensive Testing: Validate before the event
- Auto-Scale Down: Aggressively reduce capacity after peak
Phase 1: Application Layer Auto-Scaling
Current State Analysis
# Analyze current capacity
# Current: 1,500 TPS with 10 instances = 150 TPS per instance
# Target: 5,000 TPS with 20% headroom = 6,000 TPS capacity
# Required: ~40 instances (4x scaling)
# Calculate instance requirements
CURRENT_INSTANCES=10
CURRENT_TPS=1500
TARGET_TPS=5000
HEADROOM_PERCENT=20
TARGET_CAPACITY=$(echo "$TARGET_TPS * (1 + $HEADROOM_PERCENT / 100)" | bc)
INSTANCES_NEEDED=$(echo "($TARGET_CAPACITY / ($CURRENT_TPS / $CURRENT_INSTANCES))" | bc)
echo "Target capacity: $TARGET_CAPACITY TPS"
echo "Instances needed: $INSTANCES_NEEDED"
Auto Scaling Group Configuration
CloudFormation Template:
Resources:
ApplicationAutoScalingGroup:
Type: AWS::AutoScaling::AutoScalingGroup
Properties:
MinSize: 10
MaxSize: 50
DesiredCapacity: 10
VPCZoneIdentifier:
- !Ref AppSubnet1
- !Ref AppSubnet2
- !Ref AppSubnet3
LaunchTemplate:
LaunchTemplateId: !Ref ApplicationLaunchTemplate
Version: !GetAtt ApplicationLaunchTemplate.LatestVersionNumber
TargetGroupARNs:
- !Ref ApplicationTargetGroup
HealthCheckType: ELB
HealthCheckGracePeriod: 300
Cooldown: 300
Tags:
- Key: Name
Value: PaymentApp
PropagateAtLaunch: true
- Key: Environment
Value: Production
PropagateAtLaunch: true
ScaleUpPolicy:
Type: AWS::AutoScaling::ScalingPolicy
Properties:
AutoScalingGroupName: !Ref ApplicationAutoScalingGroup
PolicyType: TargetTrackingScaling
TargetTrackingConfiguration:
PredefinedMetricSpecification:
PredefinedMetricType: ASGAverageCPUUtilization
TargetValue: 70.0
ScaleInCooldown: 300
ScaleOutCooldown: 60
ScheduledScaleUp:
Type: AWS::AutoScaling::ScheduledAction
Properties:
AutoScalingGroupName: !Ref ApplicationAutoScalingGroup
ScheduledActionName: BlackFridayScaleUp
DesiredCapacity: 40
Recurrence: "0 2 24 11 *" # Nov 24 at 2 AM UTC (2 hours before peak)
MinSize: 40
MaxSize: 50
ScheduledScaleDown:
Type: AWS::AutoScaling::ScheduledAction
Properties:
AutoScalingGroupName: !Ref ApplicationAutoScalingGroup
ScheduledActionName: BlackFridayScaleDown
DesiredCapacity: 10
Recurrence: "0 2 26 11 *" # Nov 26 at 2 AM UTC (after Black Friday)
MinSize: 10
MaxSize: 50
Advanced Scaling Policies
Multi-Metric Scaling:
{
"TargetTrackingScalingPolicies": [
{
"TargetValue": 70.0,
"PredefinedMetricSpecification": {
"PredefinedMetricType": "ASGAverageCPUUtilization"
},
"ScaleInCooldown": 300,
"ScaleOutCooldown": 60
},
{
"TargetValue": 500.0,
"PredefinedMetricSpecification": {
"PredefinedMetricType": "ALBRequestCountPerTarget",
"ResourceLabel": "app/payment-alb/123456789/targetgroup/payment-tg/123456789"
},
"ScaleInCooldown": 300,
"ScaleOutCooldown": 60
}
]
}
Custom Metric Scaling (Response Time):
import boto3
cloudwatch = boto3.client('cloudwatch')
autoscaling = boto3.client('autoscaling')
def create_response_time_scaling_policy():
"""Create scaling policy based on response time"""
# Put custom metric for response time
cloudwatch.put_metric_data(
Namespace='PaymentApp/Performance',
MetricData=[{
'MetricName': 'P95ResponseTime',
'Value': 0.5, # 500ms threshold
'Unit': 'Seconds'
}]
)
# Create scaling policy
autoscaling.put_scaling_policy(
AutoScalingGroupName='payment-app-asg',
PolicyName='scale-on-response-time',
PolicyType='TargetTrackingScaling',
TargetTrackingConfiguration={
'CustomizedMetricSpecification': {
'MetricName': 'P95ResponseTime',
'Namespace': 'PaymentApp/Performance',
'Statistic': 'Average',
'Unit': 'Seconds'
},
'TargetValue': 0.5, # Scale if p95 > 500ms
'ScaleInCooldown': 300,
'ScaleOutCooldown': 60
}
)
ECS Auto-Scaling (If Using Containers)
# Register scalable target
aws application-autoscaling register-scalable-target \
--service-namespace ecs \
--scalable-dimension ecs:service:DesiredCount \
--resource-id service/payment-cluster/payment-service \
--min-capacity 10 \
--max-capacity 50 \
--role-arn arn:aws:iam::account:role/ecs-autoscaling-role
# Create scaling policy
aws application-autoscaling put-scaling-policy \
--service-namespace ecs \
--scalable-dimension ecs:service:DesiredCount \
--resource-id service/payment-cluster/payment-service \
--policy-name payment-service-scaling \
--policy-type TargetTrackingScaling \
--target-tracking-scaling-policy-configuration '{
"TargetValue": 70.0,
"PredefinedMetricSpecification": {
"PredefinedMetricType": "ECSServiceAverageCPUUtilization"
},
"ScaleInCooldown": 300,
"ScaleOutCooldown": 60
}'
Warm Pools for Faster Scaling
# Create warm pool for faster instance startup
aws autoscaling put-warm-pool \
--auto-scaling-group-name payment-app-asg \
--min-size 5 \
--max-size 10 \
--instance-reuse-policy ReuseOnScaleIn=true
Phase 2: Database Scaling Strategy
Read Replicas Setup
Create RDS Read Replicas:
# Create read replica for Black Friday
aws rds create-db-instance-read-replica \
--db-instance-identifier payment-db-read-replica-1 \
--source-db-instance-identifier payment-db-primary \
--db-instance-class db.r5.4xlarge \
--publicly-accessible false \
--availability-zone us-east-1a
# Create additional replicas
aws rds create-db-instance-read-replica \
--db-instance-identifier payment-db-read-replica-2 \
--source-db-instance-identifier payment-db-primary \
--db-instance-class db.r5.4xlarge \
--publicly-accessible false \
--availability-zone us-east-1b
aws rds create-db-instance-read-replica \
--db-instance-identifier payment-db-read-replica-3 \
--source-db-instance-identifier payment-db-primary \
--db-instance-class db.r5.4xlarge \
--publicly-accessible false \
--availability-zone us-east-1c
Read Replica Auto-Scaling:
import boto3
import json
rds = boto3.client('rds')
cloudwatch = boto3.client('cloudwatch')
def scale_read_replicas_based_on_load():
"""Dynamically add/remove read replicas based on load"""
# Get current read replica count
replicas = rds.describe_db_instances(
Filters=[{
'Name': 'db-instance-id',
'Values': ['payment-db-read-replica-*']
}]
)
current_replica_count = len(replicas.get('DBInstances', []))
# Get database load metrics
response = cloudwatch.get_metric_statistics(
Namespace='AWS/RDS',
MetricName='CPUUtilization',
Dimensions=[
{'Name': 'DBInstanceIdentifier', 'Value': 'payment-db-primary'}
],
StartTime=datetime.utcnow() - timedelta(minutes=5),
EndTime=datetime.utcnow(),
Period=300,
Statistics=['Average']
)
avg_cpu = response['Datapoints'][0]['Average'] if response['Datapoints'] else 0
# Scale logic
if avg_cpu > 80 and current_replica_count < 5:
# Create new replica
replica_id = f"payment-db-read-replica-{current_replica_count + 1}"
rds.create_db_instance_read_replica(
DBInstanceIdentifier=replica_id,
SourceDBInstanceIdentifier='payment-db-primary',
DBInstanceClass='db.r5.4xlarge'
)
print(f"Created read replica: {replica_id}")
elif avg_cpu < 40 and current_replica_count > 2:
# Remove replica (keep at least 2)
replica_to_delete = f"payment-db-read-replica-{current_replica_count}"
rds.delete_db_instance(DBInstanceIdentifier=replica_to_delete)
print(f"Deleted read replica: {replica_to_delete}")
RDS Proxy for Connection Pooling
Create RDS Proxy:
# Create RDS Proxy for connection pooling
aws rds create-db-proxy \
--db-proxy-name payment-db-proxy \
--engine-family POSTGRESQL \
--auth '{
"AuthScheme": "SECRETS",
"SecretArn": "arn:aws:secretsmanager:region:account:secret:payment-db-credentials",
"IAMAuth": "DISABLED"
}' \
--role-arn arn:aws:iam::account:role/rds-proxy-role \
--vpc-subnet-ids subnet-123 subnet-456 subnet-789 \
--vpc-security-group-ids sg-12345678 \
--require-tls \
--idle-client-timeout 1800 \
--max-connections-percent 100 \
--max-idle-connections-percent 50
# Register database targets
aws rds register-db-proxy-targets \
--db-proxy-name payment-db-proxy \
--targets '[
{
"RdsResourceId": "payment-db-primary",
"TargetRole": "WRITER"
},
{
"RdsResourceId": "payment-db-read-replica-1",
"TargetRole": "READER"
},
{
"RdsResourceId": "payment-db-read-replica-2",
"TargetRole": "READER"
}
]'
Application Connection Using RDS Proxy:
import psycopg2
import boto3
def get_db_connection():
"""Get database connection through RDS Proxy"""
# RDS Proxy endpoint
proxy_endpoint = "payment-db-proxy.proxy-xxxxx.us-east-1.rds.amazonaws.com"
# Get credentials from Secrets Manager
secrets_client = boto3.client('secretsmanager')
secret = secrets_client.get_secret_value(SecretId='payment-db-credentials')
credentials = json.loads(secret['SecretString'])
# Connect through proxy (automatic read/write splitting)
connection = psycopg2.connect(
host=proxy_endpoint,
port=5432,
database=credentials['database'],
user=credentials['username'],
password=credentials['password']
)
return connection
Database Query Optimization
Identify Slow Queries:
-- Enable query logging
ALTER DATABASE paymentdb SET log_min_duration_statement = 1000; -- Log queries > 1s
-- Find slow queries
SELECT
pid,
now() - pg_stat_activity.query_start AS duration,
query,
state
FROM pg_stat_activity
WHERE state = 'active'
AND now() - pg_stat_activity.query_start > interval '1 second'
ORDER BY duration DESC;
-- Analyze query execution plan
EXPLAIN ANALYZE
SELECT * FROM transactions
WHERE customer_id = $1
AND created_at >= NOW() - INTERVAL '30 days';
Optimize with Indexes:
-- Create indexes for common queries
CREATE INDEX CONCURRENTLY idx_transactions_customer_date
ON transactions(customer_id, created_at DESC);
CREATE INDEX CONCURRENTLY idx_transactions_status
ON transactions(status)
WHERE status IN ('pending', 'processing');
-- Update statistics
ANALYZE transactions;
Phase 3: Caching Strategy
Amazon ElastiCache for Redis
Create Redis Cluster:
# Create Redis cluster for caching
aws elasticache create-cache-cluster \
--cache-cluster-id payment-cache \
--cache-node-type cache.r6g.xlarge \
--engine redis \
--num-cache-nodes 3 \
--cache-parameter-group-name default.redis7 \
--security-group-ids sg-cache-12345678 \
--subnet-group-name payment-cache-subnet-group \
--engine-version 7.0 \
--port 6379 \
--snapshot-retention-limit 7 \
--automatic-failover-enabled \
--multi-az-enabled
Application-Level Caching:
import redis
import json
import hashlib
redis_client = redis.Redis(
host='payment-cache.xxxxx.cache.amazonaws.com',
port=6379,
decode_responses=True
)
def get_cached_data(cache_key, fetch_function, ttl=300):
"""Generic caching function"""
# Try cache first
cached = redis_client.get(cache_key)
if cached:
return json.loads(cached)
# Cache miss - fetch from source
data = fetch_function()
# Store in cache
redis_client.setex(
cache_key,
ttl,
json.dumps(data)
)
return data
def get_customer_profile(customer_id):
"""Get customer profile with caching"""
cache_key = f"customer:profile:{customer_id}"
def fetch_from_db():
# Database query
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute(
"SELECT * FROM customers WHERE id = %s",
(customer_id,)
)
return cursor.fetchone()
return get_cached_data(cache_key, fetch_from_db, ttl=600)
def get_transaction_history(customer_id, days=30):
"""Get transaction history with caching"""
cache_key = f"transactions:{customer_id}:{days}"
def fetch_from_db():
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("""
SELECT * FROM transactions
WHERE customer_id = %s
AND created_at >= NOW() - INTERVAL '%s days'
ORDER BY created_at DESC
""", (customer_id, days))
return cursor.fetchall()
# Shorter TTL for transaction data (more dynamic)
return get_cached_data(cache_key, fetch_from_db, ttl=60)
Cache Warming Before Black Friday:
def warm_cache_before_black_friday():
"""Pre-populate cache with frequently accessed data"""
# Get top 1000 customers by transaction volume
conn = get_db_connection()
cursor = conn.cursor()
cursor.execute("""
SELECT customer_id, COUNT(*) as tx_count
FROM transactions
WHERE created_at >= NOW() - INTERVAL '90 days'
GROUP BY customer_id
ORDER BY tx_count DESC
LIMIT 1000
""")
top_customers = cursor.fetchall()
# Warm cache for each customer
for customer_id, _ in top_customers:
get_customer_profile(customer_id)
get_transaction_history(customer_id, days=30)
print(f"Warmed cache for customer {customer_id}")
print(f"Cache warming complete for {len(top_customers)} customers")
Application Load Balancer Caching
ALB with CloudFront for Static Content:
# Create CloudFront distribution for static assets
aws cloudfront create-distribution \
--distribution-config '{
"CallerReference": "payment-app-static",
"Aliases": {
"Quantity": 1,
"Items": ["static.payment.example.com"]
},
"DefaultRootObject": "index.html",
"Origins": {
"Quantity": 1,
"Items": [{
"Id": "payment-alb",
"DomainName": "payment-alb-123456789.us-east-1.elb.amazonaws.com",
"CustomOriginConfig": {
"HTTPPort": 80,
"HTTPSPort": 443,
"OriginProtocolPolicy": "https-only"
}
}]
},
"DefaultCacheBehavior": {
"TargetOriginId": "payment-alb",
"ViewerProtocolPolicy": "redirect-to-https",
"AllowedMethods": {
"Quantity": 2,
"Items": ["GET", "HEAD"],
"CachedMethods": {
"Quantity": 2,
"Items": ["GET", "HEAD"]
}
},
"Compress": true,
"MinTTL": 0,
"DefaultTTL": 86400,
"MaxTTL": 31536000
},
"Enabled": true
}'
Phase 4: Load Testing and Validation
AWS Distributed Load Testing
Create Load Test Configuration:
# load-test-config.yaml
testName: BlackFridayLoadTest
testDescription: Validate 10x traffic spike handling
testDuration: 3600 # 1 hour
rampUp: 600 # 10 minutes ramp-up
targetTPS: 5000
scenarios:
- name: payment_processing
weight: 70
script: |
POST /api/payments
Headers:
Authorization: Bearer ${token}
Body:
amount: ${random(10, 1000)}
currency: USD
customer_id: ${random_customer_id}
- name: transaction_history
weight: 20
script: |
GET /api/transactions?customer_id=${random_customer_id}
Headers:
Authorization: Bearer ${token}
- name: account_balance
weight: 10
script: |
GET /api/accounts/${random_customer_id}/balance
Headers:
Authorization: Bearer ${token}
Run Load Test:
# Create load test
aws iotdeviceadvisor create-suite-definition \
--suite-definition-configuration '{
"suiteDefinitionName": "BlackFridayLoadTest",
"devices": [{
"thingArn": "arn:aws:iot:region:account:thing/load-test-device"
}]
}'
# Or use AWS Distributed Load Testing service
aws load-testing create-test-run \
--test-name BlackFridayLoadTest \
--test-config file://load-test-config.yaml \
--target-url https://payment.example.com
Custom Load Testing Script:
import asyncio
import aiohttp
import time
from statistics import mean, median
async def send_request(session, url, data):
"""Send single request"""
start = time.time()
try:
async with session.post(url, json=data) as response:
await response.read()
duration = time.time() - start
return {
'status': response.status,
'duration': duration,
'success': response.status == 200
}
except Exception as e:
return {
'status': 0,
'duration': time.time() - start,
'success': False,
'error': str(e)
}
async def load_test(target_tps, duration_seconds):
"""Run load test"""
url = "https://payment.example.com/api/payments"
concurrent_requests = target_tps # 1 request per second per connection
results = []
start_time = time.time()
async with aiohttp.ClientSession() as session:
while time.time() - start_time < duration_seconds:
tasks = []
for _ in range(concurrent_requests):
data = {
'amount': 100.0,
'currency': 'USD',
'customer_id': 'test-customer-123'
}
tasks.append(send_request(session, url, data))
batch_results = await asyncio.gather(*tasks)
results.extend(batch_results)
# Wait 1 second before next batch
await asyncio.sleep(1)
# Analyze results
durations = [r['duration'] for r in results]
successes = [r['success'] for r in results]
print(f"Total requests: {len(results)}")
print(f"Success rate: {sum(successes) / len(successes) * 100:.2f}%")
print(f"Average response time: {mean(durations):.3f}s")
print(f"Median response time: {median(durations):.3f}s")
print(f"P95 response time: {sorted(durations)[int(len(durations) * 0.95)]:.3f}s")
print(f"P99 response time: {sorted(durations)[int(len(durations) * 0.99)]:.3f}s")
return results
# Run load test
asyncio.run(load_test(target_tps=5000, duration_seconds=3600))
Load Testing Phases
Week 1-2: Baseline Testing
# Establish baseline
python load_test.py --target-tps 500 --duration 300
Week 3-5: Incremental Testing
# Test at 1x, 2x, 3x, 5x, 10x
for multiplier in 1 2 3 5 10; do
target_tps=$((500 * multiplier))
echo "Testing at ${target_tps} TPS"
python load_test.py --target-tps $target_tps --duration 600
done
Week 6: Stress Testing
# Push beyond expected load
python load_test.py --target-tps 6000 --duration 1800 # 30 minutes
Week 7: Soak Testing
# Sustained load at peak
python load_test.py --target-tps 5000 --duration 14400 # 4 hours
Phase 5: Cost Optimization
Reserved Instances Strategy
# Purchase Reserved Instances for baseline capacity
aws ec2 purchase-reserved-instances-offering \
--reserved-instances-offering-id 12345678-1234-1234-1234-123456789012 \
--instance-count 10 \
--instance-type t3.large
# RDS Reserved Instances
aws rds purchase-reserved-db-instances-offering \
--reserved-db-instances-offering-id 12345678-1234-1234-1234-123456789012 \
--db-instance-count 1 \
--db-instance-class db.r5.4xlarge
Spot Instances for Non-Critical Workloads
import boto3
ec2 = boto3.client('ec2')
autoscaling = boto3.client('autoscaling')
def configure_spot_instances():
"""Configure spot instances for cost savings"""
# Create launch template with spot instances
ec2.create_launch_template(
LaunchTemplateName='payment-app-spot',
LaunchTemplateData={
'ImageId': 'ami-12345678',
'InstanceType': 't3.large',
'InstanceMarketOptions': {
'MarketType': 'spot',
'SpotOptions': {
'MaxPrice': '0.10', # Maximum bid price
'SpotInstanceType': 'one-time',
'InstanceInterruptionBehavior': 'terminate'
}
}
}
)
# Create separate ASG for spot instances (for non-critical workloads)
autoscaling.create_auto_scaling_group(
AutoScalingGroupName='payment-app-spot-asg',
LaunchTemplate={
'LaunchTemplateName': 'payment-app-spot',
'Version': '$Latest'
},
MinSize=0,
MaxSize=20,
DesiredCapacity=0, # Start with 0, scale up only when needed
VPCZoneIdentifier='subnet-123,subnet-456',
Tags=[
{
'Key': 'InstanceType',
'Value': 'Spot',
'PropagateAtLaunch': True
}
]
)
Auto-Scaling Down After Peak
import boto3
from datetime import datetime, timedelta
autoscaling = boto3.client('autoscaling')
cloudwatch = boto3.client('cloudwatch')
def aggressive_scale_down():
"""Aggressively scale down after Black Friday"""
# Check if traffic has dropped
response = cloudwatch.get_metric_statistics(
Namespace='AWS/ApplicationELB',
MetricName='RequestCount',
Dimensions=[
{'Name': 'LoadBalancer', 'Value': 'app/payment-alb/123456789'}
],
StartTime=datetime.utcnow() - timedelta(hours=2),
EndTime=datetime.utcnow(),
Period=300,
Statistics=['Sum']
)
# Calculate average requests per second
total_requests = sum([d['Sum'] for d in response['Datapoints']])
avg_rps = total_requests / (2 * 3600) # 2 hours
# If below normal (500 TPS), scale down aggressively
if avg_rps < 600: # 20% above normal
autoscaling.set_desired_capacity(
AutoScalingGroupName='payment-app-asg',
DesiredCapacity=10, # Back to baseline
HonorCooldown=False # Ignore cooldown for faster scale-down
)
print(f"Scaled down to baseline (current RPS: {avg_rps:.2f})")
Cost Monitoring Dashboard
import boto3
from datetime import datetime, timedelta
ce = boto3.client('ce') # Cost Explorer
def get_daily_costs():
"""Get daily AWS costs"""
end_date = datetime.now().strftime('%Y-%m-%d')
start_date = (datetime.now() - timedelta(days=7)).strftime('%Y-%m-%d')
response = ce.get_cost_and_usage(
TimePeriod={
'Start': start_date,
'End': end_date
},
Granularity='DAILY',
Metrics=['UnblendedCost'],
GroupBy=[
{'Type': 'DIMENSION', 'Key': 'SERVICE'},
{'Type': 'DIMENSION', 'Key': 'USAGE_TYPE'}
]
)
daily_costs = {}
for result in response['ResultsByTime']:
date = result['TimePeriod']['Start']
daily_costs[date] = {}
for group in result['Groups']:
service = group['Keys'][0]
cost = float(group['Metrics']['UnblendedCost']['Amount'])
daily_costs[date][service] = cost
return daily_costs
# Create CloudWatch dashboard for costs
cloudwatch = boto3.client('cloudwatch')
def create_cost_dashboard():
"""Create CloudWatch dashboard for cost monitoring"""
dashboard_body = {
"widgets": [
{
"type": "metric",
"properties": {
"metrics": [
["AWS/Billing", "EstimatedCharges", {"stat": "Maximum"}]
],
"period": 86400,
"stat": "Maximum",
"region": "us-east-1",
"title": "Daily AWS Costs"
}
}
]
}
cloudwatch.put_dashboard(
DashboardName='BlackFridayCosts',
DashboardBody=json.dumps(dashboard_body)
)
Phase 6: Monitoring and Observability
CloudWatch Dashboards
Real-Time Operations Dashboard:
import boto3
import json
cloudwatch = boto3.client('cloudwatch')
def create_black_friday_dashboard():
"""Create comprehensive monitoring dashboard"""
dashboard = {
"widgets": [
{
"type": "metric",
"properties": {
"metrics": [
["AWS/ApplicationELB", "RequestCount", {"stat": "Sum", "period": 60}],
[".", "TargetResponseTime", {"stat": "Average", "period": 60}],
[".", "HTTPCode_Target_2XX_Count", {"stat": "Sum", "period": 60}],
[".", "HTTPCode_Target_5XX_Count", {"stat": "Sum", "period": 60}]
],
"period": 60,
"stat": "Average",
"region": "us-east-1",
"title": "Application Load Balancer Metrics"
}
},
{
"type": "metric",
"properties": {
"metrics": [
["AWS/AutoScaling", "GroupDesiredCapacity", {"stat": "Average", "dimensions": [{"Name": "AutoScalingGroupName", "Value": "payment-app-asg"}]}],
[".", "GroupInServiceInstances", {"stat": "Average", "dimensions": [{"Name": "AutoScalingGroupName", "Value": "payment-app-asg"}]}],
[".", "GroupTotalInstances", {"stat": "Average", "dimensions": [{"Name": "AutoScalingGroupName", "Value": "payment-app-asg"}]}]
],
"period": 60,
"stat": "Average",
"region": "us-east-1",
"title": "Auto Scaling Group"
}
},
{
"type": "metric",
"properties": {
"metrics": [
["AWS/RDS", "CPUUtilization", {"stat": "Average", "dimensions": [{"Name": "DBInstanceIdentifier", "Value": "payment-db-primary"}]}],
[".", "DatabaseConnections", {"stat": "Average", "dimensions": [{"Name": "DBInstanceIdentifier", "Value": "payment-db-primary"}]}],
[".", "ReadLatency", {"stat": "Average", "dimensions": [{"Name": "DBInstanceIdentifier", "Value": "payment-db-primary"}]}],
[".", "WriteLatency", {"stat": "Average", "dimensions": [{"Name": "DBInstanceIdentifier", "Value": "payment-db-primary"}]}]
],
"period": 60,
"stat": "Average",
"region": "us-east-1",
"title": "RDS Database Metrics"
}
},
{
"type": "metric",
"properties": {
"metrics": [
["AWS/ElastiCache", "CPUUtilization", {"stat": "Average", "dimensions": [{"Name": "CacheClusterId", "Value": "payment-cache"}]}],
[".", "NetworkBytesIn", {"stat": "Sum", "dimensions": [{"Name": "CacheClusterId", "Value": "payment-cache"}]}],
[".", "NetworkBytesOut", {"stat": "Sum", "dimensions": [{"Name": "CacheClusterId", "Value": "payment-cache"}]}]
],
"period": 60,
"stat": "Average",
"region": "us-east-1",
"title": "ElastiCache Metrics"
}
},
{
"type": "log",
"properties": {
"query": "SOURCE '/aws/ecs/payment-service' | fields @timestamp, @message\n| filter @message like /ERROR/\n| sort @timestamp desc\n| limit 100",
"region": "us-east-1",
"title": "Application Errors",
"view": "table"
}
}
]
}
cloudwatch.put_dashboard(
DashboardName='BlackFridayMonitoring',
DashboardBody=json.dumps(dashboard)
)
Critical Alerts
def create_critical_alerts():
"""Create CloudWatch alarms for critical metrics"""
alarms = [
{
'AlarmName': 'high-error-rate',
'MetricName': 'HTTPCode_Target_5XX_Count',
'Namespace': 'AWS/ApplicationELB',
'Statistic': 'Sum',
'Period': 60,
'EvaluationPeriods': 2,
'Threshold': 10,
'ComparisonOperator': 'GreaterThanThreshold'
},
{
'AlarmName': 'high-response-time',
'MetricName': 'TargetResponseTime',
'Namespace': 'AWS/ApplicationELB',
'Statistic': 'Average',
'Period': 60,
'EvaluationPeriods': 3,
'Threshold': 1.0, # 1 second
'ComparisonOperator': 'GreaterThanThreshold'
},
{
'AlarmName': 'database-connection-pool-exhausted',
'MetricName': 'DatabaseConnections',
'Namespace': 'AWS/RDS',
'Statistic': 'Average',
'Period': 300,
'EvaluationPeriods': 2,
'Threshold': 80, # 80% of max connections
'ComparisonOperator': 'GreaterThanThreshold'
}
]
for alarm in alarms:
cloudwatch.put_metric_alarm(**alarm)
print(f"Created alarm: {alarm['AlarmName']}")
Phase 7: Security and Compliance
Maintain Security During Scaling
# Ensure security groups allow traffic
aws ec2 authorize-security-group-ingress \
--group-id sg-12345678 \
--protocol tcp \
--port 8080 \
--source-group sg-alb-12345678
# Enable WAF on ALB
aws wafv2 create-web-acl \
--name payment-app-waf \
--scope REGIONAL \
--default-action Allow={} \
--rules file://waf-rules.json
Compliance Monitoring
def check_compliance_during_peak():
"""Verify compliance during peak load"""
config = boto3.client('config')
# Check encryption compliance
response = config.get_compliance_summary_by_config_rule(
ConfigRuleNames=['encrypted-volumes']
)
compliance = response['ComplianceSummariesByConfigRule'][0]
if compliance['ComplianceSummary']['NonCompliantResourceCount']['CappedCount'] > 0:
print("⚠️ Compliance issue detected during peak load")
return False
print("✅ All compliance checks passed")
return True
Implementation Timeline
8-Week Preparation Plan
Weeks 1-2: Planning and Design
- Finalize architecture
- Create CloudFormation templates
- Set up monitoring
Weeks 3-4: Infrastructure Implementation
- Deploy auto-scaling groups
- Set up read replicas
- Configure ElastiCache
- Implement RDS Proxy
Weeks 5-6: Load Testing Phase 1
- Baseline testing
- Incremental load testing (1x, 2x, 3x, 5x)
- Identify and fix bottlenecks
Week 7: Load Testing Phase 2
- Stress testing (6,000 TPS)
- Soak testing (4 hours at 5,000 TPS)
- Failover testing
Week 8: Final Preparations
- Review all configurations
- Team training
- Dry run procedures
- Final checklist
Black Friday (Event Day)
- Pre-scale 2 hours before peak
- Continuous monitoring
- Incident response team on standby
Post-Black Friday
- Scale down within 24 hours
- Post-event review
- Cost analysis
- Lessons learned
Success Metrics
Performance Targets
target_metrics = {
'response_time_p95_ms': 500, # < 500ms
'response_time_p99_ms': 1000, # < 1s
'error_rate_percent': 0.1, # < 0.1%
'transaction_success_rate_percent': 99.9, # > 99.9%
'availability_percent': 99.99, # > 99.99%
'auto_scaling_response_time_minutes': 5, # < 5 minutes
'cost_increase_percent': 400 # 4x for peak period only
}
Conclusion
Scaling for a 10x traffic spike requires a comprehensive, multi-layered approach. Key takeaways:
- Horizontal auto-scaling with predictive scaling prevents capacity issues
- Read replicas and RDS Proxy handle database load efficiently
- Multi-level caching reduces database pressure significantly
- Comprehensive load testing validates the strategy before the event
- Cost optimization through Reserved Instances and aggressive scale-down
- Real-time monitoring ensures visibility during peak load
The result? A payment platform that handles Black Friday traffic seamlessly while maintaining security, compliance, and cost efficiency.
Top comments (0)