Dynamic Programming (DP) is powerful, but it often suffers from time complexity (O(n²) or O(n³)) and space complexity (O(n*m)).
This is where DP Optimization Techniques come in — they let us solve problems that would otherwise be impossible within time limits.
In this blog, we’ll cover 5 essential DP optimization methods every advanced developer and competitive programmer must know:
- Space Optimization (Rolling Arrays)
 - Divide & Conquer DP
 - Convex Hull Trick (CHT)
 - Knuth Optimization
 - DP with Monotonic Queue
 
Let’s go step by step.
1️⃣ Space Optimization (Rolling Arrays)
Many DP problems only depend on the previous row or column.
Instead of storing the entire dp[n][m], we can just store two rows (current + previous).
Example: Longest Common Subsequence (LCS)
class LCS {
    public int longestCommonSubsequence(String s1, String s2) {
        int n = s1.length(), m = s2.length();
        int[] prev = new int[m+1];
        int[] curr = new int[m+1];
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (s1.charAt(i-1) == s2.charAt(j-1)) {
                    curr[j] = 1 + prev[j-1];
                } else {
                    curr[j] = Math.max(prev[j], curr[j-1]);
                }
            }
            prev = curr.clone(); // roll arrays
        }
        return prev[m];
    }
}
✅ Space reduced from O(n*m) → O(m).
This technique is widely used in LCS, Knapsack, Edit Distance, LIS variants.
2️⃣ Divide & Conquer DP
This optimization applies when:
dp[i][j] = min_{k < j}(dp[i-1][k] + C[k][j])- The optimal partition point (
k) is monotonic → meaningopt[i][j] <= opt[i][j+1]. 
This lets us compute each row in O(n log n) instead of O(n²).
Example: Partitioning an Array into K Groups
class DivideAndConquerDP {
    static int INF = 1_000_000_000;
    int[][] dp, opt;
    public void compute(int i, int l, int r, int optL, int optR, int[] cost) {
        if (l > r) return;
        int mid = (l + r) / 2;
        int bestK = -1;
        dp[i][mid] = INF;
        for (int k = optL; k <= Math.min(mid, optR); k++) {
            int val = dp[i-1][k] + cost[mid] - cost[k];
            if (val < dp[i][mid]) {
                dp[i][mid] = val;
                bestK = k;
            }
        }
        compute(i, l, mid-1, optL, bestK, cost);
        compute(i, mid+1, r, bestK, optR, cost);
    }
}
✅ Used in text segmentation, scheduling, partition problems.
3️⃣ Convex Hull Trick (CHT)
If DP looks like:
dp[i] = min_{j < i}(dp[j] + m[j]*x[i] + c[j])
We can treat each transition as a line equation (y = m*x + c) and use a Convex Hull of lines to answer queries efficiently.
Example: DP with Linear Costs
class ConvexHullDP {
    static class Line {
        long m, c;
        Line(long m, long c) { this.m = m; this.c = c; }
        long eval(long x) { return m * x + c; }
    }
    Deque<Line> hull = new ArrayDeque<>();
    boolean bad(Line l1, Line l2, Line l3) {
        return (l3.c - l1.c) * (l1.m - l2.m) < (l2.c - l1.c) * (l1.m - l3.m);
    }
    void addLine(long m, long c) {
        Line l = new Line(m, c);
        while (hull.size() >= 2) {
            Line l2 = hull.removeLast();
            Line l1 = hull.peekLast();
            if (bad(l1, l2, l)) {
                continue;
            } else {
                hull.addLast(l2);
                break;
            }
        }
        hull.addLast(l);
    }
    long query(long x) {
        while (hull.size() >= 2 && hull.getFirst().eval(x) >= hull.get(1).eval(x)) {
            hull.removeFirst();
        }
        return hull.getFirst().eval(x);
    }
}
✅ Used in DP with quadratic/linear costs, like Divide array into segments, speed optimization problems.
4️⃣ Knuth Optimization
This reduces O(n³) → O(n²) in interval DP problems like Matrix Chain Multiplication, Optimal BST, and Merging Stones.
- Works when the “optimal split point” is monotonic:
opt[i][j-1] <= opt[i][j] <= opt[i+1][j]. 
Example: Matrix Chain Multiplication
class KnuthOptimization {
    public int matrixChainOrder(int[] dims) {
        int n = dims.length - 1;
        int[][] dp = new int[n][n];
        int[][] opt = new int[n][n];
        for (int i = 0; i < n; i++) opt[i][i] = i;
        for (int len = 2; len <= n; len++) {
            for (int i = 0; i + len - 1 < n; i++) {
                int j = i + len - 1;
                dp[i][j] = Integer.MAX_VALUE;
                for (int k = opt[i][j-1]; k <= opt[i+1][j]; k++) {
                    int cost = dp[i][k] + dp[k+1][j] + dims[i] * dims[k+1] * dims[j+1];
                    if (cost < dp[i][j]) {
                        dp[i][j] = cost;
                        opt[i][j] = k;
                    }
                }
            }
        }
        return dp[0][n-1];
    }
}
✅ Used in parsing, merging files, matrix multiplication, stone merging.
5️⃣ DP with Monotonic Queue
This applies when DP recurrence involves a sliding window minimum/maximum.
We maintain a deque to get the best candidate in O(1) amortized per step.
Example: Sliding Window DP
Problem: dp[i] = arr[i] + min(dp[i-k...i-1])
class MonotonicQueueDP {
    public int minCost(int[] arr, int k) {
        int n = arr.length;
        int[] dp = new int[n];
        Deque<Integer> dq = new ArrayDeque<>();
        dp[0] = arr[0];
        dq.add(0);
        for (int i = 1; i < n; i++) {
            while (!dq.isEmpty() && dq.peekFirst() < i - k) dq.pollFirst();
            dp[i] = arr[i] + dp[dq.peekFirst()];
            while (!dq.isEmpty() && dp[dq.peekLast()] >= dp[i]) dq.pollLast();
            dq.add(i);
        }
        return dp[n-1];
    }
}
✅ Used in constrained subsequence problems, knapsack with window, shortest path in DAG-like structures.
🏁 Wrap-Up
- Space Optimization → Save memory (Knapsack, LCS, Edit Distance).
 - 
Divide & Conquer DP → Reduces 
O(n²)toO(n log n)in partition DP. - Convex Hull Trick → Optimizes linear/quadratic DP recurrences.
 - 
Knuth Optimization → Improves interval DP from 
O(n³)toO(n²). - Monotonic Queue DP → Handles sliding window transitions efficiently.
 
These techniques separate a good DP coder from a great one 💡.
    
Top comments (0)