DEV Community

Henry Lin
Henry Lin

Posted on

Lesson 24.4: Leverage Trading Operations Detailed Guide

Lesson 24.4: Leverage Trading Operations Detailed Guide

⏱ Duration: 2 hours
🎯 Learning Objectives: Master various Binance leverage trading operations, learn safe use of leverage to amplify returns


⚠️ Important Risk Warning

Leverage trading carries extremely high risks, please operate with extreme caution!

🔴 High Risk Warning:
- Leverage trading amplifies both gains and losses
- May result in losses exceeding initial investment
- Requires payment of interest fees
- May face forced liquidation in extreme market conditions

📋 Suitable for:
- Those with extensive spot trading experience
- Deep understanding of leverage mechanisms and risks
- Those with comprehensive risk management strategies
- Those who can afford significant capital losses

💡 Recommendation: Start with small capital for testing, gradually increase after fully understanding the mechanisms
Enter fullscreen mode Exit fullscreen mode

Course Overview

Leverage trading allows traders to borrow funds to expand trading scale, thereby amplifying potential returns. However, losses are also amplified.

Key Focus of This Lesson:

Leverage is a double-edged sword, proper use can accelerate profits, abuse can lead to rapid liquidation.

This lesson will cover in detail:

  • Binance leverage trading account setup and management
  • Various leverage trading operations and strategies
  • Risk control and capital management
  • Leverage trading optimization techniques

Part 1: Binance Leverage Trading Basics

1.1 Leverage Trading Account Setup

1.1.1 Activating Margin Account

import ccxt

# Connect to Binance
exchange = ccxt.binance({
    'apiKey': 'your_api_key',
    'secret': 'your_secret',
    'options': {
        'defaultType': 'margin'  # Set to leverage trading mode
    }
})

def setup_margin_account():
    """
    Setup leverage trading account
    """
    try:
        # 1. Activate margin account
        exchange.activate_margin_account()
        print("✅ Margin account activated")

        # 2. Check account information
        account_info = exchange.fetch_balance()
        print(f"Margin account info:")
        print(f"  Total Assets: {account_info['USDT']['total']} USDT")
        print(f"  Available Balance: {account_info['USDT']['free']} USDT")
        print(f"  Borrowed Amount: {account_info['USDT']['used']} USDT")

        # 3. Check leverage trading pairs
        margin_pairs = exchange.load_markets()
        enabled_margin_pairs = [pair for pair in margin_pairs.values() if pair.get('active', False)]
        print(f"Available margin trading pairs: {len(enabled_margin_pairs)}")

        return True

    except Exception as e:
        print(f"❌ Failed to setup margin account: {e}")
        return False

# Execute setup
setup_margin_account()
Enter fullscreen mode Exit fullscreen mode

1.1.2 Margin Account Fund Management

class MarginAccountManager:
    def __init__(self, exchange):
        self.exchange = exchange

    def transfer_to_margin(self, currency, amount):
        """
        Transfer funds from spot account to margin account
        """
        try:
            result = self.exchange.transfer(
                code=currency,
                amount=amount,
                fromAccount='spot',
                toAccount='margin'
            )
            print(f"✅ Transfer successful: {amount} {currency}")
            return result
        except Exception as e:
            print(f"❌ Transfer failed: {e}")
            return None

    def transfer_from_margin(self, currency, amount):
        """
        Transfer funds from margin account to spot account
        """
        try:
            result = self.exchange.transfer(
                code=currency,
                amount=amount,
                fromAccount='margin',
                toAccount='spot'
            )
            print(f"✅ Transfer successful: {amount} {currency}")
            return result
        except Exception as e:
            print(f"❌ Transfer failed: {e}")
            return None

    def get_margin_account_info(self):
        """
        Get detailed margin account information
        """
        try:
            account_info = self.exchange.fetch_balance()

            margin_info = {}
            for currency, balance in account_info.items():
                if isinstance(balance, dict) and balance.get('total', 0) > 0:
                    margin_info[currency] = {
                        'total': balance['total'],
                        'free': balance['free'],
                        'used': balance['used']
                    }

            return margin_info

        except Exception as e:
            print(f"❌ Failed to get account info: {e}")
            return {}

    def calculate_margin_level(self):
        """
        Calculate leverage level
        """
        try:
            # Get total asset value
            total_assets = 0
            total_liability = 0

            account_info = self.get_margin_account_info()
            for currency, balance in account_info.items():
                if currency == 'USDT':
                    total_assets += balance['total']
                    total_liability += balance['used']
                else:
                    # Get USDT price for other currencies
                    ticker = self.exchange.fetch_ticker(f'{currency}/USDT')
                    usdt_value = balance['total'] * ticker['last']
                    total_assets += usdt_value
                    total_liability += balance['used'] * ticker['last']

            if total_liability == 0:
                margin_level = float('inf')
            else:
                margin_level = total_assets / total_liability

            return {
                'total_assets': total_assets,
                'total_liability': total_liability,
                'equity': total_assets - total_liability,
                'margin_level': margin_level
            }

        except Exception as e:
            print(f"❌ Failed to calculate leverage level: {e}")
            return None

# Usage example
manager = MarginAccountManager(exchange)

# Transfer to margin account
manager.transfer_to_margin('USDT', 100)

# Check account information
margin_info = manager.get_margin_account_info()
print("Margin account balance:", margin_info)

# Calculate leverage level
margin_level = manager.calculate_margin_level()
if margin_level:
    print(f"Total Assets: ${margin_level['total_assets']:.2f}")
    print(f"Total Liabilities: ${margin_level['total_liability']:.2f}")
    print(f"Net Equity: ${margin_level['equity']:.2f}")
    print(f"Leverage Level: {margin_level['margin_level']:.2f}x")
Enter fullscreen mode Exit fullscreen mode

1.2 Borrowing Operations

1.2.1 Borrowing Funds

def borrow_margin(currency, amount):
    """
    Borrow leverage funds
    """
    try:
        # Check maximum borrowable amount
        max_borrowable = exchange.fetch_max_borrowable_amount(currency)
        print(f"Maximum borrowable amount: {max_borrowable} {currency}")

        if amount > max_borrowable:
            print(f"❌ Borrow amount exceeds maximum limit")
            return None

        # Execute borrowing
        result = exchange.create_margin_loan(currency, amount)
        print(f"✅ Borrow successful: {amount} {currency}")
        print(f"Borrow ID: {result.get('id', 'N/A')}")

        return result

    except Exception as e:
        print(f"❌ Borrow failed: {e}")
        return None

def repay_margin(currency, amount):
    """
    Repay leverage funds
    """
    try:
        # Execute repayment
        result = exchange.repay_margin_loan(currency, amount)
        print(f"✅ Repayment successful: {amount} {currency}")
        print(f"Repayment ID: {result.get('id', 'N/A')}")

        return result

    except Exception as e:
        print(f"❌ Repayment failed: {e}")
        return None

# Usage example
borrow_result = borrow_margin('USDT', 50)
if borrow_result:
    # Use funds for trading...
    # Then repay
    repay_margin('USDT', 50)
Enter fullscreen mode Exit fullscreen mode

1.2.2 Interest Calculation and Management

class InterestCalculator:
    def __init__(self, exchange):
        self.exchange = exchange

    def get_interest_rates(self):
        """
        Get interest rate information for various currencies
        """
        try:
            # Get interest rate information (may require different API calls)
            interest_rates = {
                'USDT': {'daily': 0.0002, 'yearly': 0.073},  # Example rates
                'BTC': {'daily': 0.0003, 'yearly': 0.1095},
                'ETH': {'daily': 0.0004, 'yearly': 0.146}
            }
            return interest_rates

        except Exception as e:
            print(f"❌ Failed to get interest rate information: {e}")
            return {}

    def calculate_daily_interest(self, borrowed_amount, currency, hours=24):
        """
        Calculate daily interest
        """
        rates = self.get_interest_rates()
        if currency not in rates:
            return 0

        daily_rate = rates[currency]['daily']
        hourly_interest = borrowed_amount * daily_rate / 24
        total_interest = hourly_interest * hours

        return total_interest

    def get_loan_history(self):
        """
        Get borrowing history
        """
        try:
            # This needs adjustment based on actual API
            history = self.exchange.fetch_loans()
            return history

        except Exception as e:
            print(f"❌ Failed to get borrowing history: {e}")
            return []

    def estimate_total_interest_cost(self, borrowed_amount, currency, days):
        """
        Estimate total interest cost
        """
        rates = self.get_interest_rates()
        if currency not in rates:
            return 0

        daily_rate = rates[currency]['daily']
        total_interest = borrowed_amount * daily_rate * days

        return total_interest

# Usage example
calculator = InterestCalculator(exchange)

# Calculate interest
borrowed_amount = 1000
currency = 'USDT'
daily_interest = calculator.calculate_daily_interest(borrowed_amount, currency)
monthly_interest = calculator.estimate_total_interest_cost(borrowed_amount, currency, 30)

print(f"Borrowing {borrowed_amount} {currency}:")
print(f"Daily Interest: ${daily_interest:.4f}")
print(f"30-day Interest: ${monthly_interest:.2f}")
Enter fullscreen mode Exit fullscreen mode

Part 2: Leverage Trading Strategies

2.1 Margin Long Strategy

2.1.1 Basic Margin Long

def margin_long_position(exchange, symbol, amount_usdt, leverage=3):
    """
    Margin long trading
    """
    try:
        # 1. Borrow funds
        borrow_amount = amount_usdt * (leverage - 1)
        base_currency = symbol.split('/')[0]  # Get base currency, e.g., BTC

        borrow_result = exchange.create_margin_loan(base_currency, borrow_amount)
        if not borrow_result:
            return None

        # 2. Get current price
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        # 3. Calculate purchase quantity
        total_amount = amount_usdt / current_price
        available_amount = exchange.fetch_balance()[base_currency]['free']

        # Ensure not exceeding available balance
        buy_amount = min(total_amount, available_amount)

        # 4. Execute buy
        order = exchange.create_market_buy_order(symbol, buy_amount)

        print(f"✅ Margin long successful")
        print(f"Trading Pair: {symbol}")
        print(f"Purchase Quantity: {buy_amount}")
        print(f"Execution Price: ${current_price:.2f}")
        print(f"Leverage: {leverage}x")
        print(f"Borrowed Amount: {borrow_amount} {base_currency}")

        return {
            'order': order,
            'borrow_amount': borrow_amount,
            'leverage': leverage,
            'entry_price': current_price,
            'position_size': buy_amount
        }

    except Exception as e:
        print(f"❌ Margin long failed: {e}")
        return None
Enter fullscreen mode Exit fullscreen mode

2.1.2 Progressive Position Building Strategy

class ProgressiveMarginLong:
    def __init__(self, exchange, symbol, total_amount, leverage=3):
        self.exchange = exchange
        self.symbol = symbol
        self.total_amount = total_amount
        self.leverage = leverage
        self.positions = []
        self.entry_prices = []

    def execute_progressive_buy(self, batches=3):
        """
        Progressive position building
        """
        amount_per_batch = self.total_amount / batches
        base_currency = self.symbol.split('/')[0]

        for i in range(batches):
            print(f"Executing batch {i+1}/{batches} buy...")

            # Calculate borrowing amount for this batch
            borrow_amount = amount_per_batch * (self.leverage - 1)

            # Borrow
            borrow_result = self.exchange.create_margin_loan(base_currency, borrow_amount)
            if not borrow_result:
                print(f"Batch {i+1} borrowing failed")
                continue

            # Get current price
            ticker = self.exchange.fetch_ticker(self.symbol)
            current_price = ticker['last']

            # Calculate purchase quantity
            buy_amount = amount_per_batch / current_price

            # Execute buy
            try:
                order = self.exchange.create_market_buy_order(self.symbol, buy_amount)

                self.positions.append({
                    'batch': i + 1,
                    'order': order,
                    'amount': buy_amount,
                    'price': current_price,
                    'borrowed': borrow_amount
                })

                self.entry_prices.append(current_price)
                print(f"Batch {i+1} buy successful: {buy_amount} @ ${current_price:.2f}")

                # Wait for some time before executing next batch
                if i < batches - 1:
                    time.sleep(60)  # Wait 1 minute

            except Exception as e:
                print(f"Batch {i+1} buy failed: {e}")

        # Calculate average cost
        if self.entry_prices:
            avg_entry_price = sum(self.entry_prices) / len(self.entry_prices)
            total_invested = sum(pos['amount'] * pos['price'] for pos in self.positions)

            print(f"\n=== Progressive Position Building Complete ===")
            print(f"Total Batches: {len(self.positions)}")
            print(f"Average Cost: ${avg_entry_price:.2f}")
            print(f"Total Investment: ${total_invested:.2f}")
            print(f"Total Leverage: {self.leverage}x")

        return self.positions

    def calculate_position_metrics(self):
        """
        Calculate position metrics
        """
        if not self.positions:
            return None

        # Get current price
        ticker = self.exchange.fetch_ticker(self.symbol)
        current_price = ticker['last']

        # Calculate total PnL
        total_cost = sum(pos['amount'] * pos['price'] for pos in self.positions)
        total_value = sum(pos['amount'] * current_price for pos in self.positions)
        total_pnl = total_value - total_cost
        pnl_percentage = (total_pnl / total_cost) * 100

        # Calculate leveraged PnL
        leveraged_pnl = total_pnl * self.leverage
        leveraged_pnl_percentage = (leveraged_pnl / total_cost) * 100

        return {
            'current_price': current_price,
            'avg_entry_price': sum(self.entry_prices) / len(self.entry_prices),
            'total_cost': total_cost,
            'total_value': total_value,
            'unleveraged_pnl': total_pnl,
            'unleveraged_pnl_pct': pnl_percentage,
            'leveraged_pnl': leveraged_pnl,
            'leveraged_pnl_pct': leveraged_pnl_percentage,
            'total_borrowed': sum(pos['borrowed'] for pos in self.positions)
        }

# Usage example
progressive_long = ProgressiveMarginLong(exchange, 'BTC/USDT', 1000, leverage=3)
positions = progressive_long.execute_progressive_buy(batches=3)

# Calculate position metrics
if positions:
    metrics = progressive_long.calculate_position_metrics()
    print(f"\n=== Position Metrics ===")
    print(f"Current Price: ${metrics['current_price']:.2f}")
    print(f"Average Cost: ${metrics['avg_entry_price']:.2f}")
    print(f"Unleveraged PnL: ${metrics['unleveraged_pnl']:.2f} ({metrics['unleveraged_pnl_pct']:.2f}%)")
    print(f"Leveraged PnL: ${metrics['leveraged_pnl']:.2f} ({metrics['leveraged_pnl_pct']:.2f}%)")
Enter fullscreen mode Exit fullscreen mode

2.2 Margin Short Strategy

2.2.1 Basic Margin Short

def margin_short_position(exchange, symbol, amount_usdt, leverage=3):
    """
    Margin short trading
    """
    try:
        # 1. Borrow base currency (need to borrow first for shorting)
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        base_currency = symbol.split('/')[0]
        base_amount = amount_usdt / current_price
        borrow_amount = base_amount * leverage

        # Borrow base currency
        borrow_result = exchange.create_margin_loan(base_currency, borrow_amount)
        if not borrow_result:
            return None

        print(f"✅ Borrowed {borrow_amount} {base_currency} successfully")

        # 2. Sell borrowed currency
        order = exchange.create_market_sell_order(symbol, borrow_amount)

        print(f"✅ Margin short successful")
        print(f"Trading Pair: {symbol}")
        print(f"Short Quantity: {borrow_amount}")
        print(f"Execution Price: ${current_price:.2f}")
        print(f"Leverage: {leverage}x")
        print(f"Cash Proceeds: ${borrow_amount * current_price:.2f}")

        return {
            'order': order,
            'borrow_amount': borrow_amount,
            'leverage': leverage,
            'short_price': current_price,
            'proceeds': borrow_amount * current_price
        }

    except Exception as e:
        print(f"❌ Margin short failed: {e}")
        return None

def close_margin_short(exchange, symbol, short_position):
    """
    Close margin short position
    """
    try:
        # 1. Get current price
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        # 2. Calculate quantity to buy back
        buy_amount = short_position['borrow_amount']

        # 3. Buy back currency
        order = exchange.create_market_buy_order(symbol, buy_amount)

        # 4. Repay loan
        base_currency = symbol.split('/')[0]
        repay_result = exchange.repay_margin_loan(base_currency, buy_amount)

        # 5. Calculate PnL
        initial_proceeds = short_position['proceeds']
        final_cost = buy_amount * current_price
        pnl = initial_proceeds - final_cost
        pnl_percentage = (pnl / initial_proceeds) * 100

        # Leveraged PnL
        leveraged_pnl = pnl * short_position['leverage']
        leveraged_pnl_percentage = (leveraged_pnl / initial_proceeds) * 100

        print(f"✅ Position close successful")
        print(f"Buy-back Price: ${current_price:.2f}")
        print(f"Initial Proceeds: ${initial_proceeds:.2f}")
        print(f"Close Cost: ${final_cost:.2f}")
        print(f"Base PnL: ${pnl:.2f} ({pnl_percentage:.2f}%)")
        print(f"Leveraged PnL: ${leveraged_pnl:.2f} ({leveraged_pnl_percentage:.2f}%)")

        return {
            'pnl': pnl,
            'pnl_percentage': pnl_percentage,
            'leveraged_pnl': leveraged_pnl,
            'leveraged_pnl_percentage': leveraged_pnl_percentage
        }

    except Exception as e:
        print(f"❌ Close position failed: {e}")
        return None

# Usage example
print("=== Margin Short Example ===")
short_position = margin_short_position(exchange, 'BTC/USDT', 1000, leverage=3)

if short_position:
    # Simulate waiting for some time
    print("Waiting for price change...")
    time.sleep(60)

    # Close position
    close_result = close_margin_short(exchange, 'BTC/USDT', short_position)
Enter fullscreen mode Exit fullscreen mode

2.3 Arbitrage Strategies

2.3.1 Spot-Margin Arbitrage

class SpotMarginArbitrage:
    def __init__(self, exchange, symbol):
        self.exchange = exchange
        self.symbol = symbol
        self.base_currency = symbol.split('/')[0]
        self.quote_currency = symbol.split('/')[1]

    def find_arbitrage_opportunity(self, target_spread=0.005):
        """
        Find arbitrage opportunities
        """
        try:
            # Get spot and margin prices
            ticker = self.exchange.fetch_ticker(self.symbol)
            current_price = ticker['last']

            # Get margin interest rates
            # This needs to be adjusted based on actual API for rate information
            daily_interest_rate = 0.0002  # Assume daily rate of 0.02%

            # Calculate required spread to cover interest costs
            # Assume holding for 7 days
            holding_days = 7
            total_interest_cost = daily_interest_rate * holding_days

            # Minimum spread needed
            min_spread = total_interest_rate + target_spread

            # Check for arbitrage opportunities
            # This is simplified, actual implementation needs more complex logic
            opportunity = {
                'current_price': current_price,
                'min_spread_needed': min_spread,
                'daily_interest_rate': daily_interest_rate,
                'total_interest_cost': total_interest_cost * current_price
            }

            return opportunity

        except Exception as e:
            print(f"❌ Failed to find arbitrage opportunity: {e}")
            return None

    def execute_arbitrage(self, amount_usdt, leverage=2, holding_days=7):
        """
        Execute arbitrage trade
        """
        try:
            # 1. Buy in spot market
            ticker = self.exchange.fetch_ticker(self.symbol)
            spot_price = ticker['last']
            spot_amount = amount_usdt / spot_price

            # Spot buy
            spot_order = self.exchange.create_market_buy_order(self.symbol, spot_amount)

            # 2. Sell in margin market (short)
            # Borrow and sell
            margin_amount = spot_amount * leverage
            borrow_result = self.exchange.create_margin_loan(self.base_currency, margin_amount)

            margin_order = self.exchange.create_market_sell_order(self.symbol, margin_amount)

            print(f"✅ Arbitrage trade executed successfully")
            print(f"Spot Buy: {spot_amount} @ ${spot_price}")
            print(f"Margin Sell: {margin_amount} @ ${spot_price}")
            print(f"Leverage: {leverage}x")

            # 3. Calculate holding costs
            daily_rate = 0.0002
            total_interest = margin_amount * spot_price * daily_rate * holding_days

            return {
                'spot_order': spot_order,
                'margin_order': margin_order,
                'borrow_result': borrow_result,
                'holding_cost': total_interest,
                'leverage': leverage
            }

        except Exception as e:
            print(f"❌ Failed to execute arbitrage: {e}")
            return None

    def close_arbitrage(self, arbitrage_position):
        """
        Close arbitrage position
        """
        try:
            # 1. Close margin short (buy back)
            ticker = self.exchange.fetch_ticker(self.symbol)
            current_price = ticker['last']

            # Buy back and repay
            base_currency = arbitrage_position['margin_order']['amount']
            buy_back_order = self.exchange.create_market_buy_order(self.symbol, base_currency)
            repay_result = self.exchange.repay_margin_loan(self.base_currency, base_currency)

            # 2. Sell spot position
            spot_amount = arbitrage_position['spot_order']['amount']
            sell_order = self.exchange.create_market_sell_order(self.symbol, spot_amount)

            # 3. Calculate final PnL
            holding_cost = arbitrage_position['holding_cost']

            # Simplified calculation, actual implementation needs more precise calculation
            total_value = (spot_amount + base_currency) * current_price
            total_cost = spot_amount * current_price + base_currency * current_price + holding_cost
            net_pnl = total_value - total_cost

            print(f"✅ Arbitrage close successful")
            print(f"Final PnL: ${net_pnl:.2f}")
            print(f"Holding Cost: ${holding_cost:.2f}")

            return net_pnl

        except Exception as e:
            print(f"❌ Close position failed: {e}")
            return None

# Usage example
arbitrage = SpotMarginArbitrage(exchange, 'BTC/USDT')

# Find arbitrage opportunities
opportunity = arbitrage.find_arbitrage_opportunity()
if opportunity:
    print(f"Arbitrage opportunity found:")
    print(f"Current Price: ${opportunity['current_price']:.2f}")
    print(f"Required Spread: {opportunity['min_spread_needed']:.2%}")
    print(f"7-day Interest Cost: ${opportunity['total_interest_cost']:.2f}")

# Execute arbitrage
arbitrage_position = arbitrage.execute_arbitrage(1000, leverage=2)
if arbitrage_position:
    # Wait for appropriate close timing...
    # arbitrage.close_arbitrage(arbitrage_position)
    pass
Enter fullscreen mode Exit fullscreen mode

Part 3: Risk Management

3.1 Liquidation Risk Management

3.1.1 Liquidation Price Calculation

def calculate_margin_liquidation_price(entry_price, position_size, borrowed_amount, leverage, side='long'):
    """
    Calculate liquidation price
    """
    # Maintenance margin rate (Binance default)
    maintenance_margin_rate = 0.1  # 10% maintenance margin

    if side == 'long':
        # Long liquidation price
        total_position_value = position_size * entry_price
        borrowed_value = borrowed_amount * entry_price

        # Liquidation asset value = loan + maintenance margin
        liquidation_value = borrowed_value * (1 + maintenance_margin_rate)
        liquidation_price = liquidation_value / position_size

    else:  # short
        # Short liquidation price
        total_position_value = position_size * entry_price

        # Value needed to buy back at liquidation
        liquidation_value = borrowed_amount * entry_price * (1 + maintenance_margin_rate)
        liquidation_price = liquidation_value / position_size

    return liquidation_price

def analyze_liquidation_risk(exchange, symbol, position_details):
    """
    Analyze liquidation risk
    """
    try:
        # Get current price
        ticker = exchange.fetch_ticker(symbol)
        current_price = ticker['last']

        # Calculate liquidation price
        liquidation_price = calculate_margin_liquidation_price(
            position_details['entry_price'],
            position_details['position_size'],
            position_details['borrowed_amount'],
            position_details['leverage'],
            position_details['side']
        )

        # Calculate percentage distance to liquidation
        if position_details['side'] == 'long':
            distance_to_liquidation = (current_price - liquidation_price) / current_price * 100
        else:
            distance_to_liquidation = (liquidation_price - current_price) / current_price * 100

        # Risk rating
        if distance_to_liquidation < 2:
            risk_level = 'CRITICAL'
            recommendation = 'Immediately reduce position or add margin'
        elif distance_to_liquidation < 5:
            risk_level = 'HIGH'
            recommendation = 'Monitor closely, consider reducing position'
        elif distance_to_liquidation < 10:
            risk_level = 'MEDIUM'
            recommendation = 'Check regularly, operate cautiously'
        else:
            risk_level = 'LOW'
            recommendation = 'Risk controllable'

        return {
            'current_price': current_price,
            'liquidation_price': liquidation_price,
            'distance_to_liquidation': distance_to_liquidation,
            'risk_level': risk_level,
            'recommendation': recommendation
        }

    except Exception as e:
        print(f"❌ Failed to analyze liquidation risk: {e}")
        return None

# Usage example
position_details = {
    'entry_price': 30000,
    'position_size': 0.1,
    'borrowed_amount': 0.2,
    'leverage': 3,
    'side': 'long'
}

risk_analysis = analyze_liquidation_risk(exchange, 'BTC/USDT', position_details)
if risk_analysis:
    print(f"=== Liquidation Risk Analysis ===")
    print(f"Current Price: ${risk_analysis['current_price']:.2f}")
    print(f"Liquidation Price: ${risk_analysis['liquidation_price']:.2f}")
    print(f"Distance to Liquidation: {risk_analysis['distance_to_liquidation']:.2f}%")
    print(f"Risk Level: {risk_analysis['risk_level']}")
    print(f"Recommendation: {risk_analysis['recommendation']}")
Enter fullscreen mode Exit fullscreen mode

3.1.2 Liquidation Alert System

class LiquidationAlertSystem:
    def __init__(self, exchange):
        self.exchange = exchange
        self.alert_thresholds = {
            'critical': 2,   # 2% distance
            'warning': 5,    # 5% distance
            'caution': 10    # 10% distance
        }
        self.last_alert_time = {}

    def check_all_positions(self):
        """
        Check liquidation risk for all positions
        """
        try:
            # Get all margin trading pairs
            margin_info = self.exchange.fetch_balance()

            alerts = []

            for currency, balance in margin_info.items():
                if isinstance(balance, dict) and balance.get('used', 0) > 0:
                    # Build trading pair
                    if currency != 'USDT':
                        symbol = f'{currency}/USDT'

                        # Get current price
                        ticker = self.exchange.fetch_ticker(symbol)
                        current_price = ticker['last']

                        # Calculate liquidation price (simplified calculation)
                        borrowed_amount = balance['used']
                        liquidation_price = current_price * 0.9  # Simplified calculation

                        # Calculate percentage distance to liquidation
                        distance_to_liquidation = abs(current_price - liquidation_price) / current_price * 100

                        # Check if alert needed
                        alert_level = self.check_alert_level(distance_to_liquidation)

                        if alert_level:
                            alert = self.create_alert(symbol, current_price, liquidation_price, distance_to_liquidation, alert_level)
                            alerts.append(alert)

            return alerts

        except Exception as e:
            print(f"❌ Failed to check positions: {e}")
            return []

    def check_alert_level(self, distance_to_liquidation):
        """
        Check alert level
        """
        if distance_to_liquidation <= self.alert_thresholds['critical']:
            return 'CRITICAL'
        elif distance_to_liquidation <= self.alert_thresholds['warning']:
            return 'WARNING'
        elif distance_to_liquidation <= self.alert_thresholds['caution']:
            return 'CAUTION'
        else:
            return None

    def create_alert(self, symbol, current_price, liquidation_price, distance, level):
        """
        Create alert message
        """
        current_time = time.time()

        # Avoid duplicate alerts (only alert once per pair within 5 minutes)
        alert_key = f"{symbol}_{level}"
        if (alert_key in self.last_alert_time and
            current_time - self.last_alert_time[alert_key] < 300):
            return None

        self.last_alert_time[alert_key] = current_time

        alert_message = f"""
🚨 Margin Liquidation {level} Alert!

Trading Pair: {symbol}
Current Price: ${current_price:.2f}
Liquidation Price: ${liquidation_price:.2f}
Distance to Liquidation: {distance:.2f}%

Recommended Action:
"""

        if level == 'CRITICAL':
            alert_message += "- Immediately reduce position or add margin\n- Prepare to accept partial losses"
        elif level == 'WARNING':
            alert_message += "- Monitor price movements closely\n- Consider partial position reduction"
        else:  # CAUTION
            alert_message += "- Check position status regularly\n- Set price alerts"

        return {
            'symbol': symbol,
            'level': level,
            'message': alert_message,
            'timestamp': current_time
        }

    def send_alerts(self, alerts):
        """
        Send alerts
        """
        for alert in alerts:
            if alert:
                print(alert['message'])

                # Here you can add other notification methods
                # send_telegram_alert(alert['message'])
                # send_email_alert(alert['message'])

# Usage example
alert_system = LiquidationAlertSystem(exchange)

# Regular checks (in actual applications can use scheduled tasks)
while True:
    alerts = alert_system.check_all_positions()
    if alerts:
        alert_system.send_alerts(alerts)

    time.sleep(60)  # Check every minute
Enter fullscreen mode Exit fullscreen mode

3.2 Capital Management Strategies

3.2.1 Kelly Formula in Leverage Trading

class KellyLeverageManager:
    def __init__(self, initial_balance=1000):
        self.initial_balance = initial_balance
        self.current_balance = initial_balance
        self.trade_history = []

    def calculate_optimal_leverage(self, win_rate, avg_win_pct, avg_loss_pct):
        """
        Calculate optimal leverage multiplier
        """
        # Calculate expected return rate
        expected_return = win_rate * avg_win_pct - (1 - win_rate) * abs(avg_loss_pct)

        # If expected return is negative, don't recommend using leverage
        if expected_return <= 0:
            return 1.0, "Expected return is negative, recommend not using leverage"

        # Kelly formula: f = (p*b - q) / b
        # where b = average win/average loss
        b = avg_win_pct / abs(avg_loss_pct)
        p = win_rate
        q = 1 - p

        kelly_fraction = (b * p - q) / b

        # Conservative adjustment (use only 50% of Kelly calculation result)
        conservative_fraction = kelly_fraction * 0.5

        # Convert to leverage multiplier
        # Assuming base position of 20% capital, leverage = 1 / (position ratio * Kelly fraction)
        base_position_ratio = 0.2
        optimal_leverage = conservative_fraction / base_position_ratio

        # Limit leverage range
        optimal_leverage = max(1.0, min(optimal_leverage, 5.0))

        recommendation = f"Kelly formula recommends leverage: {optimal_leverage:.2f}x"

        return optimal_leverage, recommendation

    def calculate_position_size(self, leverage, risk_per_trade=0.02):
        """
        Calculate leverage trading position size
        """
        # Base position size (no leverage)
        base_position_size = self.current_balance * risk_per_trade

        # Actual position considering leverage
        leveraged_position_size = base_position_size * leverage

        # Ensure not exceeding 80% of account balance
        max_position = self.current_balance * 0.8
        final_position_size = min(leveraged_position_size, max_position)

        return {
            'base_position': base_position_size,
            'leveraged_position': leveraged_position_size,
            'final_position': final_position_size,
            'leverage_used': final_position_size / base_position_size
        }

    def record_trade(self, pnl, leverage):
        """
        Record trade result
        """
        self.current_balance += pnl
        self.trade_history.append({
            'timestamp': datetime.now(),
            'pnl': pnl,
            'balance': self.current_balance,
            'leverage': leverage
        })

    def get_performance_summary(self):
        """
        Get trading performance summary
        """
        if not self.trade_history:
            return None

        total_trades = len(self.trade_history)
        winning_trades = [t for t in self.trade_history if t['pnl'] > 0]
        losing_trades = [t for t in self.trade_history if t['pnl'] < 0]

        win_rate = len(winning_trades) / total_trades if total_trades > 0 else 0

        avg_win = sum(t['pnl'] for t in winning_trades) / len(winning_trades) if winning_trades else 0
        avg_loss = sum(t['pnl'] for t in losing_trades) / len(losing_trades) if losing_trades else 0

        total_pnl = self.current_balance - self.initial_balance
        total_return = total_pnl / self.initial_balance * 100

        avg_leverage = sum(t['leverage'] for t in self.trade_history) / total_trades

        return {
            'total_trades': total_trades,
            'win_rate': win_rate,
            'avg_win': avg_win,
            'avg_loss': avg_loss,
            'total_pnl': total_pnl,
            'total_return_pct': total_return,
            'avg_leverage': avg_leverage,
            'current_balance': self.current_balance
        }

# Usage example
manager = KellyLeverageManager(initial_balance=1000)

# Assume historical trading data
win_rate = 0.6
avg_win_pct = 0.08  # 8% average win
avg_loss_pct = 0.04  # 4% average loss

# Calculate optimal leverage
optimal_leverage, recommendation = manager.calculate_optimal_leverage(win_rate, avg_win_pct, avg_loss_pct)
print(recommendation)

# Calculate position size
position_info = manager.calculate_position_size(optimal_leverage)
print(f"Recommended position size: ${position_info['final_position']:.2f}")
print(f"Actual leverage used: {position_info['leverage_used']:.2f}x")
Enter fullscreen mode Exit fullscreen mode

3.2.2 Dynamic Leverage Adjustment

class DynamicLeverageAdjuster:
    def __init__(self, base_leverage=2, max_leverage=5, min_leverage=1):
        self.base_leverage = base_leverage
        self.max_leverage = max_leverage
        self.min_leverage = min_leverage
        self.volatility_history = []
        self.equity_history = []

    def calculate_market_volatility(self, symbol, lookback_days=14):
        """
        Calculate market volatility
        """
        try:
            # Get historical price data
            ohlcv = self.exchange.fetch_ohlcv(symbol, '1d', limit=lookback_days)

            if len(ohlcv) < 2:
                return 0.02  # Default volatility

            # Calculate daily returns
            daily_returns = []
            for i in range(1, len(ohlcv)):
                prev_close = ohlcv[i-1][4]
                current_close = ohlcv[i][4]
                daily_return = (current_close - prev_close) / prev_close
                daily_returns.append(daily_return)

            # Calculate volatility (standard deviation)
            import numpy as np
            volatility = np.std(daily_returns)

            self.volatility_history.append(volatility)
            if len(self.volatility_history) > 30:
                self.volatility_history.pop(0)

            return volatility

        except Exception as e:
            print(f"❌ Failed to calculate volatility: {e}")
            return 0.02

    def adjust_leverage_by_volatility(self, current_volatility):
        """
        Adjust leverage based on volatility
        """
        # Calculate average volatility
        if len(self.volatility_history) > 0:
            avg_volatility = sum(self.volatility_history) / len(self.volatility_history)
        else:
            avg_volatility = current_volatility

        # Volatility adjustment factor
        if current_volatility > avg_volatility * 1.5:  # High volatility
            volatility_factor = 0.5
        elif current_volatility > avg_volatility * 1.2:  # Medium volatility
            volatility_factor = 0.7
        elif current_volatility < avg_volatility * 0.8:  # Low volatility
            volatility_factor = 1.3
        else:  # Normal volatility
            volatility_factor = 1.0

        adjusted_leverage = self.base_leverage * volatility_factor
        adjusted_leverage = max(self.min_leverage, min(adjusted_leverage, self.max_leverage))

        return adjusted_leverage, volatility_factor

    def adjust_leverage_by_equity(self, current_equity, initial_equity):
        """
        Adjust leverage based on equity changes
        """
        # Record equity history
        self.equity_history.append(current_equity)
        if len(self.equity_history) > 30:
            self.equity_history.pop(0)

        # Calculate equity change rate
        equity_change = (current_equity - initial_equity) / initial_equity

        # Equity adjustment factor
        if equity_change < -0.1:  # Loss over 10%
            equity_factor = 0.7
        elif equity_change < -0.05:  # Loss 5-10%
            equity_factor = 0.85
        elif equity_change > 0.2:  # Profit over 20%
            equity_factor = 1.2
        else:  # Normal range
            equity_factor = 1.0

        adjusted_leverage = self.base_leverage * equity_factor
        adjusted_leverage = max(self.min_leverage, min(adjusted_leverage, self.max_leverage))

        return adjusted_leverage, equity_factor

    def get_optimal_leverage(self, symbol, current_equity, initial_equity):
        """
        Get comprehensive optimal leverage
        """
        # Calculate market volatility
        volatility = self.calculate_market_volatility(symbol)

        # Adjust based on volatility
        leverage_by_vol, vol_factor = self.adjust_leverage_by_volatility(volatility)

        # Adjust based on equity
        leverage_by_equity, equity_factor = self.adjust_leverage_by_equity(current_equity, initial_equity)

        # Comprehensive adjustment (take more conservative leverage)
        final_leverage = min(leverage_by_vol, leverage_by_equity)

        # Final limit
        final_leverage = max(self.min_leverage, min(final_leverage, self.max_leverage))

        return {
            'optimal_leverage': final_leverage,
            'volatility': volatility,
            'volatility_factor': vol_factor,
            'leverage_by_volatility': leverage_by_vol,
            'equity_factor': equity_factor,
            'leverage_by_equity': leverage_by_equity,
            'recommendation': self._generate_recommendation(final_leverage, volatility, equity_factor)
        }

    def _generate_recommendation(self, leverage, volatility, equity_factor):
        """
        Generate recommendation
        """
        if leverage < self.base_leverage * 0.7:
            return "High market volatility or account losses, recommend reducing leverage"
        elif leverage > self.base_leverage * 1.2:
            return "Market stable and account profitable, can moderately increase leverage"
        else:
            return "Market conditions normal, maintain base leverage"

# Usage example
adjuster = DynamicLeverageAdjuster(base_leverage=2, max_leverage=5)

# Need exchange instance, assuming already set up
# optimal_info = adjuster.get_optimal_leverage('BTC/USDT', 1200, 1000)
# print(f"Recommended leverage: {optimal_info['optimal_leverage']:.2f}x")
# print(f"Recommendation: {optimal_info['recommendation']}")
Enter fullscreen mode Exit fullscreen mode

Part 4: Practical Configuration Examples

4.1 Conservative Leverage Strategy

class ConservativeLeverageStrategy(IStrategy):
    """
    Conservative leverage strategy
    """
    # Basic settings
    leverage = 2  # 2x leverage
    stoploss = -0.04  # 4% stop loss
    timeframe = '1h'

    # Position management
    position_size = 0.15  # 15% capital
    max_positions = 2     # Maximum 2 positions

    def leverage(self, pair: str, current_time: datetime, current_rate: float,
                 proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
                 **kwargs) -> float:

        # Conservative strategy always uses 2x leverage
        return min(2, max_leverage)

    def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
                           proposed_stake: float, min_stake: float, max_stake: float,
                           leverage: float, entry_tag: str, side: str, **kwargs) -> float:

        # Get current margin account balance
        try:
            margin_balance = self.wallets.get_total_stake_amount()

            # Use maximum 15% of capital
            custom_stake = margin_balance * self.position_size

            # Actual capital usage considering leverage
            actual_usage = custom_stake / leverage

            # Ensure not exceeding 70% of available balance
            available_ratio = 0.7
            max_available = margin_balance * available_ratio

            if actual_usage > max_available:
                actual_usage = max_available
                custom_stake = actual_usage * leverage

            return min(custom_stake, max_stake)

        except Exception as e:
            print(f"Failed to calculate position size: {e}")
            return proposed_stake

    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Technical indicators
        dataframe['sma_short'] = ta.SMA(dataframe, timeperiod=20)
        dataframe['sma_long'] = ta.SMA(dataframe, timeperiod=50)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # Volatility indicators
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)

        return dataframe

    def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Conservative long signals
        dataframe.loc[
            (
                (dataframe['sma_short'] > dataframe['sma_long']) &  # Short MA crosses above long MA
                (dataframe['rsi'] > 35) & (dataframe['rsi'] < 70) &  # RSI in reasonable range
                (dataframe['volume'] > dataframe['volume'].rolling(20).mean() * 1.2)  # Volume increase
            ),
            ['enter_long', 'enter_tag']
        ] = (1, 'conservative_long')

        return dataframe

    def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Conservative exit signals
        dataframe.loc[
            (
                (dataframe['sma_short'] < dataframe['sma_long']) |  # MA death cross
                (dataframe['rsi'] > 75) |  # RSI overbought
                (dataframe['close'] < dataframe['sma_short'] * 0.97)  # Price falls 3% below short MA
            ),
            ['exit_long', 'exit_tag']
        ] = (1, 'conservative_exit')

        return dataframe
Enter fullscreen mode Exit fullscreen mode

4.2 Balanced Leverage Strategy

class BalancedLeverageStrategy(IStrategy):
    """
    Balanced leverage strategy
    """
    # Basic settings
    leverage = 3  # 3x leverage
    stoploss = -0.06  # 6% stop loss
    timeframe = '4h'

    # Trailing stop loss
    trailing_stop = True
    trailing_stop_positive = 0.02
    trailing_stop_positive_offset = 0.04

    # Position management
    base_position_size = 0.2  # Base position 20%
    max_position_size = 0.3   # Maximum position 30%

    def leverage(self, pair: str, current_time: datetime, current_rate: float,
                 proposed_leverage: float, max_leverage: int, entry_tag: str, side: str,
                 **kwargs) -> float:

        # Adjust leverage based on volatility
        dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
        last_candle = dataframe.iloc[-1]

        # Calculate volatility
        atr = last_candle.get('atr', current_rate * 0.02)
        volatility = atr / current_rate

        # Adjust leverage based on volatility
        if volatility > 0.04:  # High volatility
            return min(2, max_leverage)
        elif volatility < 0.015:  # Low volatility
            return min(4, max_leverage)
        else:  # Normal volatility
            return min(3, max_leverage)

    def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
                           proposed_stake: float, min_stake: float, max_stake: float,
                           leverage: float, entry_tag: str, side: str, **kwargs) -> float:

        # Adjust position based on signal strength
        dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
        last_candle = dataframe.iloc[-1]

        # Calculate signal strength
        rsi = last_candle.get('rsi', 50)
        if rsi < 30:  # Oversold, strong signal
            position_multiplier = 1.5
        elif rsi < 40:  # Weak, medium signal
            position_multiplier = 1.0
        elif rsi > 70:  # Overbought, weak signal
            position_multiplier = 0.7
        else:
            position_multiplier = 1.0

        # Calculate position size
        margin_balance = self.wallets.get_total_stake_amount()
        position_size = margin_balance * self.base_position_size * position_multiplier
        position_size = min(position_size, margin_balance * self.max_position_size)

        return min(position_size, max_stake)

    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Technical indicators
        dataframe['ema_fast'] = ta.EMA(dataframe, timeperiod=12)
        dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=26)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['macd'], dataframe['macdsignal'], dataframe['macdhist'] = ta.MACD(dataframe)

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']

        # Volatility
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)

        return dataframe

    def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Long signals
        dataframe.loc[
            (
                (dataframe['ema_fast'] > dataframe['ema_slow']) &  # EMA bull alignment
                (dataframe['macd'] > dataframe['macdsignal']) &  # MACD golden cross
                (dataframe['close'] > dataframe['bb_lowerband']) &  # Price above BB lower band
                (dataframe['rsi'] < 60)  # RSI not overbought
            ),
            ['enter_long', 'enter_tag']
        ] = (1, 'balanced_long')

        # Short signals
        dataframe.loc[
            (
                (dataframe['ema_fast'] < dataframe['ema_slow']) &  # EMA bear alignment
                (dataframe['macd'] < dataframe['macdsignal']) &  # MACD death cross
                (dataframe['close'] < dataframe['bb_upperband']) &  # Price below BB upper band
                (dataframe['rsi'] > 40)  # RSI not oversold
            ),
            ['enter_short', 'enter_tag']
        ] = (1, 'balanced_short')

        return dataframe

    def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Long exit
        dataframe.loc[
            (
                (dataframe['ema_fast'] < dataframe['ema_slow']) |  # EMA death cross
                (dataframe['rsi'] > 75) |  # RSI overbought
                (dataframe['macdhist'] < 0 and dataframe['macdhist'].shift(1) > 0)  # MACD histogram turns negative
            ),
            ['exit_long', 'exit_tag']
        ] = (1, 'balanced_exit_long')

        # Short exit
        dataframe.loc[
            (
                (dataframe['ema_fast'] > dataframe['ema_slow']) |  # EMA golden cross
                (dataframe['rsi'] < 25) |  # RSI oversold
                (dataframe['macdhist'] > 0 and dataframe['macdhist'].shift(1) < 0)  # MACD histogram turns positive
            ),
            ['exit_short', 'exit_tag']
        ] = (1, 'balanced_exit_short')

        return dataframe
Enter fullscreen mode Exit fullscreen mode

📝 Practical Tasks

Task 1: Margin Account Setup

  1. Open leverage trading account on Binance
  2. Transfer test funds from spot account to margin account
  3. Practice borrowing and repayment operations
  4. Calculate interest costs for different amounts

Task 2: Leverage Trading Simulation

  1. Use 2-3x leverage for simulated trading
  2. Test both long and short operations
  3. Observe liquidation price changes
  4. Practice setting reasonable stop loss levels

Task 3: Risk Management Exercise

  1. Set up liquidation alert system
  2. Test leverage adjustments under different market conditions
  3. Calculate optimal leverage multiplier
  4. Develop comprehensive capital management plan

Task 4: Strategy Backtesting

  1. Backtest strategies with different leverage multipliers
  2. Compare returns with and without leverage
  3. Analyze risk-adjusted returns
  4. Optimize leverage parameters

📌 Key Points

Leverage Trading Safety Principles

1. Leverage Control
   ✅ Beginners should not exceed 2x leverage
   ✅ Experienced traders should not exceed 3-4x leverage
   ✅ Never use leverage above 5x
   ✅ Adjust dynamically based on market volatility

2. Position Management
   ✅ Single position should not exceed 20% of total capital
   ✅ Total borrowing should not exceed 50% of total assets
   ✅ Maintain sufficient maintenance margin
   ✅ Diversify investments to reduce risk

3. Risk Monitoring
   ✅ Monitor liquidation risk in real-time
   ✅ Set price alerts
   ✅ Regularly check interest costs
   ✅ Establish emergency plans
Enter fullscreen mode Exit fullscreen mode

Common Leverage Trading Mistakes

Mistake Consequence Correct Approach
Using excessive leverage Easy liquidation Control leverage at 2-3x
Not calculating interest costs Actual returns lower than expected Consider interest impact on returns
Ignoring liquidation risk May lose entire capital Set liquidation alerts, maintain safe distance
Adding leverage against trend Amplifies losses Follow trend, stop losses timely
Not repaying timely Interest accumulation Regular repayments, control interest costs

Leverage Trading Checklist

Pre-trade Checks:
□ Leverage multiplier set reasonably
□ Borrowing amount within affordable range
□ Liquidation price calculated accurately
□ Interest costs calculated
□ Stop loss price set

During-trade Monitoring:
□ Distance to liquidation price
□ Interest accumulation situation
□ Major market volatility
□ Account equity changes
□ Borrowing rate changes

Post-trade Summary:
□ Leverage usage effectiveness evaluation
□ Interest cost analysis
□ Risk control review
□ Strategy optimization recommendations
Enter fullscreen mode Exit fullscreen mode

🎯 Course Summary

Leverage Trading Key Points Review:

  1. Understand Leverage Mechanism: Leverage amplifies both returns and losses, must deeply understand how it works
  2. Strict Risk Control: Set reasonable stop losses, monitor liquidation risk, maintain sufficient margin
  3. Rational Leverage Use: Choose appropriate leverage multiplier based on experience and market conditions
  4. Consider Capital Costs: Interest costs affect final returns, must be included in calculations
  5. Continuous Learning and Adjustment: Markets change, leverage strategies need continuous optimization

⚠️ Final Reminder: Leverage trading is a high-risk activity, please be sure to:

  • Use capital you can afford to lose
  • Start with small capital for practice
  • Strictly execute risk management strategies
  • Continuously learn, constantly improve understanding

By mastering leverage trading techniques and risk control methods, you can use leverage to amplify returns at appropriate times. But please remember, risk control is always the top priority!

Top comments (0)