DEV Community

Henry Lin
Henry Lin

Posted on

RD-Agent 教程 - 第三章:进阶使用技巧

RD-Agent 教程 - 第三章:进阶使用技巧

3.1 量化金融代理深度解析

量化金融场景架构

RD-Agent 的量化金融代理 RD-Agent(Q) 是业界首个数据驱动的多代理量化策略开发框架。它通过协调因子-模型共同优化,实现了全栈式量化研究开发自动化。

核心架构设计

graph TB
    A[市场数据] --> B[数据预处理]
    B --> C[因子挖掘代理]
    B --> D[模型演进代理]
    C --> E[因子评估]
    D --> F[模型评估]
    E --> G[联合优化代理]
    F --> G
    G --> H[策略回测]
    H --> I[性能分析]
    I --> J{满足要求?}
    J -->|否| K[知识反馈]
    K --> C
    K --> D
    J -->|是| L[策略部署]

    style C fill:#e1f5fe
    style D fill:#f3e5f5
    style G fill:#e8f5e8
    style H fill:#fff3e0
Enter fullscreen mode Exit fullscreen mode

Qlib 框架集成

RD-Agent(Q) 深度集成了微软的 Qlib 量化投资库,提供:

数据管理:

  • 🗃️ 标准化金融数据格式
  • 📈 实时和历史数据接口
  • 🔄 数据自动更新机制
  • 🧹 数据清洗和预处理

回测引擎:

  • 📊 高性能向量化回测
  • 💰 交易成本和滑点模拟
  • 📋 多种组合构建策略
  • 📈 风险指标计算

模型库:

  • 🤖 机器学习模型集成
  • 📊 传统量化因子
  • 🧠 深度学习模型
  • 🔄 模型集成策略

因子挖掘和优化

rdagent fin_factor 详解

因子挖掘代理专注于发现和优化有效的量化因子。

启动命令:

# 基本因子挖掘
rdagent fin_factor

# 指定配置文件
rdagent fin_factor --config factor_config.yaml

# 指定迭代次数
export FACTOR_MAX_LOOP=15
rdagent fin_factor
Enter fullscreen mode Exit fullscreen mode

工作流程:

  1. 假设生成阶段
   # 基于市场理论和历史经验生成因子假设
   factor_hypotheses = [
       "技术指标动量因子",
       "财务质量因子",
       "市场情绪因子",
       "宏观经济因子"
   ]
Enter fullscreen mode Exit fullscreen mode
  1. 因子实现阶段
   # 自动生成因子计算代码
   class MomentumFactor:
       def calculate(self, data):
           # 自动生成的动量因子计算逻辑
           return (data['close'] / data['close'].shift(20) - 1)
Enter fullscreen mode Exit fullscreen mode
  1. 因子评估阶段
   # 多维度因子评估
   evaluation_metrics = {
       'IC': 0.045,          # 信息系数
       'IC_IR': 1.2,         # 信息比率
       'rank_IC': 0.038,     # 排序IC
       'turnover': 0.8,      # 换手率
       'max_drawdown': 0.15  # 最大回撤
   }
Enter fullscreen mode Exit fullscreen mode

因子生成策略

技术分析因子:

technical_factors = {
    "momentum": [
        "price_momentum_5d", "price_momentum_20d",
        "volume_momentum", "volatility_momentum"
    ],
    "mean_reversion": [
        "rsi_divergence", "bollinger_position",
        "price_deviation"
    ],
    "trend": [
        "ma_trend", "macd_signal", "trend_strength"
    ]
}
Enter fullscreen mode Exit fullscreen mode

基本面因子:

fundamental_factors = {
    "profitability": [
        "roe_trend", "roa_improvement",
        "gross_margin_stability"
    ],
    "growth": [
        "revenue_growth_consistency", "eps_growth_quality",
        "cash_flow_growth"
    ],
    "valuation": [
        "pe_relative", "pb_sector_adjusted",
        "ev_ebitda_normalized"
    ]
}
Enter fullscreen mode Exit fullscreen mode

另类因子:

alternative_factors = {
    "sentiment": [
        "news_sentiment_score", "social_media_buzz",
        "analyst_revision_momentum"
    ],
    "network": [
        "supply_chain_strength", "industry_correlation",
        "peer_performance_influence"
    ]
}
Enter fullscreen mode Exit fullscreen mode

因子有效性评估

评估框架:

class FactorEvaluator:
    def __init__(self, benchmark_data, start_date, end_date):
        self.data = benchmark_data
        self.start_date = start_date
        self.end_date = end_date

    def evaluate_factor(self, factor_values):
        """综合评估因子有效性"""
        metrics = {}

        # 1. 信息系数分析
        metrics['IC'] = self.calculate_IC(factor_values)
        metrics['IC_std'] = self.calculate_IC_stability(factor_values)
        metrics['IC_IR'] = metrics['IC'] / metrics['IC_std']

        # 2. 单调性检验
        metrics['monotonicity'] = self.test_monotonicity(factor_values)

        # 3. 换手率分析
        metrics['turnover'] = self.calculate_turnover(factor_values)

        # 4. 回测表现
        backtest_result = self.backtest_factor(factor_values)
        metrics.update(backtest_result)

        return metrics
Enter fullscreen mode Exit fullscreen mode

模型演进和优化

rdagent fin_model 详解

模型演进代理专注于预测模型的自动化开发和优化。

支持的模型类型:

模型类别 具体模型 适用场景 特点
线性模型 LinearRegression, Ridge, Lasso 简单快速预测 可解释性强
树模型 XGBoost, LightGBM, CatBoost 表格数据建模 特征重要性
神经网络 MLP, TabNet, DeepFM 复杂关系建模 非线性拟合
时序模型 LSTM, GRU, Transformer 序列数据预测 时间依赖
集成模型 Stacking, Voting, Blending 提升预测精度 模型融合

模型架构搜索

自动化架构搜索:

class ModelArchitectureSearch:
    def __init__(self):
        self.search_space = {
            "n_layers": [2, 3, 4, 5],
            "hidden_dims": [64, 128, 256, 512],
            "dropout_rate": [0.1, 0.2, 0.3, 0.4],
            "activation": ["relu", "tanh", "gelu"],
            "optimizer": ["adam", "adamw", "sgd"],
            "learning_rate": [0.001, 0.01, 0.1]
        }

    def search_best_architecture(self, train_data, valid_data):
        """搜索最优模型架构"""
        best_config = None
        best_score = float('-inf')

        for config in self.generate_configurations():
            model = self.build_model(config)
            score = self.evaluate_model(model, train_data, valid_data)

            if score > best_score:
                best_score = score
                best_config = config

        return best_config, best_score
Enter fullscreen mode Exit fullscreen mode

超参数优化

多种优化算法:

from optuna import create_study
from sklearn.model_selection import cross_val_score

class HyperparameterOptimizer:
    def __init__(self, model_class, param_space):
        self.model_class = model_class
        self.param_space = param_space

    def optimize_with_optuna(self, X_train, y_train, n_trials=100):
        """使用 Optuna 进行超参数优化"""
        def objective(trial):
            params = {}
            for param_name, param_range in self.param_space.items():
                if isinstance(param_range, list):
                    params[param_name] = trial.suggest_categorical(
                        param_name, param_range
                    )
                elif isinstance(param_range, tuple):
                    if isinstance(param_range[0], int):
                        params[param_name] = trial.suggest_int(
                            param_name, param_range[0], param_range[1]
                        )
                    else:
                        params[param_name] = trial.suggest_float(
                            param_name, param_range[0], param_range[1]
                        )

            model = self.model_class(**params)
            scores = cross_val_score(model, X_train, y_train, cv=5)
            return scores.mean()

        study = create_study(direction='maximize')
        study.optimize(objective, n_trials=n_trials)

        return study.best_params, study.best_value
Enter fullscreen mode Exit fullscreen mode

因子模型联合优化

rdagent fin_quant 详解

联合优化代理是 RD-Agent(Q) 的核心创新,实现因子和模型的协同演进。

联合优化策略:

  1. 交替优化策略
   class AlternatingOptimization:
       def __init__(self, factor_agent, model_agent):
           self.factor_agent = factor_agent
           self.model_agent = model_agent

       def optimize(self, max_iterations=10):
           for i in range(max_iterations):
               # 固定模型,优化因子
               new_factors = self.factor_agent.evolve_factors(
                   current_model=self.current_model
               )

               # 固定因子,优化模型
               new_model = self.model_agent.evolve_model(
                   current_factors=new_factors
               )

               # 评估联合性能
               performance = self.evaluate_joint_performance(
                   new_factors, new_model
               )

               if performance > self.best_performance:
                   self.update_best_solution(new_factors, new_model)
Enter fullscreen mode Exit fullscreen mode
  1. 多目标优化策略
   class MultiObjectiveOptimization:
       def __init__(self):
           self.objectives = [
               "maximize_sharpe_ratio",
               "minimize_max_drawdown",
               "maximize_information_ratio",
               "minimize_turnover"
           ]

       def pareto_optimization(self, population):
           """帕累托前沿优化"""
           pareto_front = []

           for individual in population:
               is_dominated = False
               for other in population:
                   if self.dominates(other, individual):
                       is_dominated = True
                       break

               if not is_dominated:
                   pareto_front.append(individual)

           return pareto_front
Enter fullscreen mode Exit fullscreen mode

多目标优化算法

NSGA-II 实现:

class NSGA2Optimizer:
    def __init__(self, population_size=100, generations=50):
        self.population_size = population_size
        self.generations = generations

    def optimize(self, factor_space, model_space):
        # 初始化种群
        population = self.initialize_population()

        for generation in range(self.generations):
            # 评估适应度
            fitness_values = self.evaluate_population(population)

            # 非支配排序
            fronts = self.fast_non_dominated_sort(population, fitness_values)

            # 选择下一代
            next_population = self.select_next_generation(
                fronts, population, fitness_values
            )

            # 交叉和变异
            offspring = self.crossover_and_mutation(next_population)
            population = offspring

        return self.get_pareto_front(population)
Enter fullscreen mode Exit fullscreen mode

协作演进机制

知识共享机制:

class KnowledgeSharing:
    def __init__(self):
        self.factor_knowledge_base = {}
        self.model_knowledge_base = {}
        self.interaction_patterns = {}

    def share_factor_insights(self, factor_id, insights):
        """分享因子洞察"""
        self.factor_knowledge_base[factor_id] = {
            'effectiveness': insights['ic_score'],
            'stability': insights['ic_std'],
            'best_models': insights['compatible_models'],
            'market_regimes': insights['effective_periods']
        }

    def share_model_insights(self, model_id, insights):
        """分享模型洞察"""
        self.model_knowledge_base[model_id] = {
            'architecture': insights['model_config'],
            'performance': insights['validation_score'],
            'best_factors': insights['important_features'],
            'hyperparameters': insights['optimal_params']
        }

    def get_recommendations(self, current_factors, current_model):
        """获取优化建议"""
        recommendations = {
            'factor_suggestions': [],
            'model_suggestions': [],
            'joint_strategies': []
        }

        # 基于历史知识生成建议
        for factor in current_factors:
            if factor in self.factor_knowledge_base:
                knowledge = self.factor_knowledge_base[factor]
                recommendations['model_suggestions'].extend(
                    knowledge['best_models']
                )

        return recommendations
Enter fullscreen mode Exit fullscreen mode

金融报告分析

rdagent fin_factor_report 使用

从金融报告中自动提取量化因子是 RD-Agent 的独特能力。

支持的报告类型:

  • 📋 年度报告 (10-K, Annual Report)
  • 📊 季度报告 (10-Q, Quarterly Report)
  • 📰 新闻公告 (8-K, Press Release)
  • 📈 分析师报告 (Research Report)
  • 🏛️ 监管文件 (SEC Filings)

使用示例:

# 基本报告分析
rdagent fin_factor_report --report-folder ./financial_reports

# 指定报告类型
rdagent fin_factor_report \
    --report-folder ./reports \
    --report-type annual \
    --language zh

# 批量处理
rdagent fin_factor_report \
    --report-folder ./reports \
    --batch-size 50 \
    --parallel-workers 4
Enter fullscreen mode Exit fullscreen mode

报告解析和特征提取

文本预处理流水线:

class ReportPreprocessor:
    def __init__(self):
        self.nlp = spacy.load("en_core_web_sm")
        self.financial_terms = self.load_financial_dictionary()

    def preprocess_report(self, report_text):
        """预处理财务报告"""
        # 1. 文档清理
        cleaned_text = self.clean_document(report_text)

        # 2. 段落分割
        sections = self.extract_sections(cleaned_text)

        # 3. 实体识别
        entities = self.extract_financial_entities(sections)

        # 4. 情感分析
        sentiment_scores = self.analyze_sentiment(sections)

        return {
            'sections': sections,
            'entities': entities,
            'sentiment': sentiment_scores,
            'metadata': self.extract_metadata(report_text)
        }
Enter fullscreen mode Exit fullscreen mode

因子提取策略:

class FinancialFactorExtractor:
    def __init__(self):
        self.factor_extractors = {
            'growth_factors': GrowthFactorExtractor(),
            'quality_factors': QualityFactorExtractor(),
            'sentiment_factors': SentimentFactorExtractor(),
            'risk_factors': RiskFactorExtractor()
        }

    def extract_factors(self, processed_report):
        """从处理后的报告中提取因子"""
        extracted_factors = {}

        for factor_type, extractor in self.factor_extractors.items():
            factors = extractor.extract(processed_report)
            extracted_factors[factor_type] = factors

        return extracted_factors

class GrowthFactorExtractor:
    def extract(self, report_data):
        """提取成长性因子"""
        growth_factors = {}

        # 收入增长质量
        revenue_mentions = self.find_revenue_discussions(report_data)
        growth_factors['revenue_growth_quality'] = self.analyze_growth_quality(
            revenue_mentions
        )

        # 市场扩张策略
        expansion_mentions = self.find_expansion_discussions(report_data)
        growth_factors['expansion_strategy_score'] = self.score_expansion_strategy(
            expansion_mentions
        )

        # 研发投入承诺
        rd_mentions = self.find_rd_discussions(report_data)
        growth_factors['rd_commitment_score'] = self.analyze_rd_commitment(
            rd_mentions
        )

        return growth_factors
Enter fullscreen mode Exit fullscreen mode

情感分析和信号挖掘

多维度情感分析:

class FinancialSentimentAnalyzer:
    def __init__(self):
        self.sentiment_model = pipeline(
            "sentiment-analysis",
            model="ProsusAI/finbert"
        )
        self.uncertainty_detector = UncertaintyDetector()
        self.forward_looking_detector = ForwardLookingDetector()

    def analyze_comprehensive_sentiment(self, text_sections):
        """综合情感分析"""
        sentiment_scores = {}

        for section_name, text in text_sections.items():
            # 基础情感分析
            basic_sentiment = self.sentiment_model(text)

            # 不确定性检测
            uncertainty_score = self.uncertainty_detector.detect(text)

            # 前瞻性语句检测
            forward_looking = self.forward_looking_detector.detect(text)

            sentiment_scores[section_name] = {
                'polarity': basic_sentiment[0]['score'],
                'label': basic_sentiment[0]['label'],
                'uncertainty': uncertainty_score,
                'forward_looking': forward_looking,
                'confidence': self.calculate_confidence(
                    basic_sentiment, uncertainty_score
                )
            }

        return sentiment_scores

class SignalGenerator:
    def __init__(self):
        self.signal_weights = {
            'management_tone': 0.3,
            'financial_health': 0.4,
            'market_position': 0.2,
            'future_outlook': 0.1
        }

    def generate_trading_signals(self, factor_scores, sentiment_scores):
        """生成交易信号"""
        composite_score = 0.0

        # 加权合成得分
        for factor_type, weight in self.signal_weights.items():
            if factor_type in factor_scores:
                composite_score += factor_scores[factor_type] * weight

        # 情感调整
        sentiment_adjustment = self.calculate_sentiment_adjustment(
            sentiment_scores
        )

        final_score = composite_score * sentiment_adjustment

        # 生成信号
        if final_score > 0.6:
            signal = "STRONG_BUY"
        elif final_score > 0.3:
            signal = "BUY"
        elif final_score > -0.3:
            signal = "HOLD"
        elif final_score > -0.6:
            signal = "SELL"
        else:
            signal = "STRONG_SELL"

        return {
            'signal': signal,
            'confidence': abs(final_score),
            'score': final_score,
            'components': {
                'factor_score': composite_score,
                'sentiment_adjustment': sentiment_adjustment
            }
        }
Enter fullscreen mode Exit fullscreen mode

3.2 CoSTEER 演进框架深度解析

演进框架核心原理

CoSTEER (Collaborative evolving STrategy for automatic data-cEntric dEvelopment fRamework) 是 RD-Agent 的核心演进引擎,实现了智能体的自主学习和持续改进。

协作演进策略设计

CoSTEER 框架基于以下核心原理:

  1. 多代理协作 - 不同专业代理协同工作
  2. 知识积累 - 从历史经验中学习和改进
  3. 自适应演进 - 根据反馈动态调整策略
  4. RAG增强 - 检索增强生成提升决策质量
class CoSTEER(Developer[Experiment]):
    """CoSTEER 演进框架核心类"""

    def __init__(
        self,
        settings: CoSTEERSettings,
        eva: RAGEvaluator,
        es: EvolvingStrategy,
        evolving_version: int = 2,
        with_knowledge: bool = True,
        knowledge_self_gen: bool = True,
        max_loop: int | None = None,
    ):
        self.settings = settings
        self.max_loop = settings.max_loop if max_loop is None else max_loop
        self.knowledge_base_path = Path(settings.knowledge_base_path)
        self.with_knowledge = with_knowledge
        self.knowledge_self_gen = knowledge_self_gen
        self.evolving_strategy = es
        self.evaluator = eva

        # 初始化 RAG 系统
        self.rag_strategy = self._init_rag_strategy(evolving_version)
Enter fullscreen mode Exit fullscreen mode

知识管理机制

多层次知识表示:

class KnowledgeManagementSystem:
    def __init__(self):
        self.knowledge_layers = {
            'factual_knowledge': FactualKnowledgeBase(),
            'procedural_knowledge': ProceduralKnowledgeBase(),
            'experiential_knowledge': ExperientialKnowledgeBase(),
            'meta_knowledge': MetaKnowledgeBase()
        }

    def store_knowledge(self, knowledge_item):
        """分层存储知识"""
        knowledge_type = self.classify_knowledge(knowledge_item)
        self.knowledge_layers[knowledge_type].store(knowledge_item)

    def retrieve_relevant_knowledge(self, query_context):
        """检索相关知识"""
        relevant_knowledge = {}

        for layer_name, knowledge_base in self.knowledge_layers.items():
            relevant_items = knowledge_base.query(
                query_context,
                similarity_threshold=0.7
            )
            relevant_knowledge[layer_name] = relevant_items

        return self.synthesize_knowledge(relevant_knowledge)
Enter fullscreen mode Exit fullscreen mode

知识表示格式:

@dataclass
class KnowledgeItem:
    """知识项数据结构"""
    id: str
    content: str
    knowledge_type: KnowledgeType
    domain: str
    confidence: float
    source: str
    timestamp: datetime
    usage_count: int = 0
    success_rate: float = 0.0

    def to_embedding(self) -> np.ndarray:
        """转换为向量表示"""
        return self.embedding_model.encode(self.content)

    def update_effectiveness(self, success: bool):
        """更新知识有效性"""
        self.usage_count += 1
        if success:
            self.success_rate = (
                (self.success_rate * (self.usage_count - 1) + 1.0)
                / self.usage_count
            )
        else:
            self.success_rate = (
                self.success_rate * (self.usage_count - 1)
                / self.usage_count
            )
Enter fullscreen mode Exit fullscreen mode

自适应优化算法

多策略演进算法:

class AdaptiveEvolutionStrategy:
    def __init__(self):
        self.evolution_strategies = {
            'genetic_algorithm': GeneticAlgorithmStrategy(),
            'differential_evolution': DifferentialEvolutionStrategy(),
            'particle_swarm': ParticleSwarmStrategy(),
            'simulated_annealing': SimulatedAnnealingStrategy()
        }
        self.strategy_performance = {}
        self.adaptive_weights = {}

    def evolve_population(self, population, generation):
        """自适应演进种群"""
        # 选择演进策略
        selected_strategies = self.select_strategies(generation)

        new_population = []
        for strategy_name, weight in selected_strategies.items():
            strategy = self.evolution_strategies[strategy_name]

            # 按权重分配种群
            sub_population_size = int(len(population) * weight)
            sub_population = population[:sub_population_size]

            # 演进子种群
            evolved_sub_pop = strategy.evolve(sub_population)
            new_population.extend(evolved_sub_pop)

        # 更新策略性能
        self.update_strategy_performance(new_population, generation)

        return new_population

    def select_strategies(self, generation):
        """基于历史性能选择演进策略"""
        if generation < 5:
            # 初期均匀分配
            return {name: 1.0/len(self.evolution_strategies)
                   for name in self.evolution_strategies.keys()}

        # 基于性能调整权重
        total_performance = sum(self.strategy_performance.values())
        return {
            name: performance / total_performance
            for name, performance in self.strategy_performance.items()
        }
Enter fullscreen mode Exit fullscreen mode

自定义演进策略

策略配置和调整

配置文件示例:

# costeer_config.yaml
costeer_settings:
  max_loop: 10
  knowledge_base_path: "./knowledge_base"
  new_knowledge_base_path: "./new_knowledge"
  evolving_version: 2

evolution_strategy:
  population_size: 50
  mutation_rate: 0.1
  crossover_rate: 0.8
  selection_method: "tournament"
  tournament_size: 5

rag_settings:
  embedding_model: "text-embedding-3-small"
  similarity_threshold: 0.75
  max_retrieved_docs: 10
  rerank_top_k: 5

evaluation_settings:
  metrics: ["accuracy", "f1_score", "auc_roc"]
  cross_validation_folds: 5
  test_ratio: 0.2

knowledge_management:
  auto_cleanup: true
  cleanup_threshold: 0.3
  knowledge_update_frequency: 100
  max_knowledge_items: 10000
Enter fullscreen mode Exit fullscreen mode

自定义演进策略实现:

class CustomEvolutionStrategy(EvolvingStrategy):
    """自定义演进策略"""

    def __init__(self, config: dict):
        super().__init__()
        self.config = config
        self.population_size = config.get('population_size', 50)
        self.mutation_rate = config.get('mutation_rate', 0.1)
        self.crossover_rate = config.get('crossover_rate', 0.8)

    def initialize_population(self, size: int = None):
        """初始化种群"""
        size = size or self.population_size
        population = []

        for _ in range(size):
            individual = self.create_random_individual()
            population.append(individual)

        return population

    def evolve_generation(self, population, fitness_scores):
        """演进一代"""
        new_population = []

        # 精英选择 - 保留最优个体
        elite_count = int(len(population) * 0.1)
        elite_indices = np.argsort(fitness_scores)[-elite_count:]
        for idx in elite_indices:
            new_population.append(population[idx])

        # 交叉和变异生成新个体
        while len(new_population) < len(population):
            # 选择父代
            parent1 = self.tournament_selection(population, fitness_scores)
            parent2 = self.tournament_selection(population, fitness_scores)

            # 交叉
            if random.random() < self.crossover_rate:
                child1, child2 = self.crossover(parent1, parent2)
            else:
                child1, child2 = parent1, parent2

            # 变异
            if random.random() < self.mutation_rate:
                child1 = self.mutate(child1)
            if random.random() < self.mutation_rate:
                child2 = self.mutate(child2)

            new_population.extend([child1, child2])

        return new_population[:len(population)]

    def crossover(self, parent1, parent2):
        """交叉操作"""
        # 实现具体的交叉逻辑
        # 这里以参数交叉为例
        child1_params = {}
        child2_params = {}

        for key in parent1.parameters.keys():
            if random.random() < 0.5:
                child1_params[key] = parent1.parameters[key]
                child2_params[key] = parent2.parameters[key]
            else:
                child1_params[key] = parent2.parameters[key]
                child2_params[key] = parent1.parameters[key]

        child1 = parent1.copy()
        child2 = parent2.copy()
        child1.parameters = child1_params
        child2.parameters = child2_params

        return child1, child2

    def mutate(self, individual):
        """变异操作"""
        mutated = individual.copy()

        for key, value in mutated.parameters.items():
            if random.random() < self.mutation_rate:
                if isinstance(value, (int, float)):
                    # 高斯变异
                    noise = np.random.normal(0, 0.1 * abs(value))
                    mutated.parameters[key] = value + noise
                elif isinstance(value, str):
                    # 字符串变异(如模型名称)
                    mutated.parameters[key] = self.mutate_string(value)

        return mutated
Enter fullscreen mode Exit fullscreen mode

评估器自定义

多指标评估器:

class MultiMetricEvaluator(RAGEvaluator):
    """多指标评估器"""

    def __init__(self, metrics_config: dict):
        super().__init__()
        self.metrics_config = metrics_config
        self.metric_weights = metrics_config.get('weights', {})
        self.metric_calculators = self._init_metric_calculators()

    def evaluate(self, experiment: Experiment) -> Dict[str, float]:
        """多指标评估"""
        metrics = {}

        for metric_name, calculator in self.metric_calculators.items():
            try:
                score = calculator.calculate(experiment)
                metrics[metric_name] = score
            except Exception as e:
                logger.warning(f"计算指标 {metric_name} 失败: {e}")
                metrics[metric_name] = 0.0

        # 计算加权综合得分
        weighted_score = self._calculate_weighted_score(metrics)
        metrics['weighted_score'] = weighted_score

        return metrics

    def _calculate_weighted_score(self, metrics: Dict[str, float]) -> float:
        """计算加权综合得分"""
        total_score = 0.0
        total_weight = 0.0

        for metric_name, score in metrics.items():
            if metric_name in self.metric_weights:
                weight = self.metric_weights[metric_name]
                total_score += score * weight
                total_weight += weight

        return total_score / total_weight if total_weight > 0 else 0.0

class CustomMetricCalculator:
    """自定义指标计算器"""

    def __init__(self, metric_name: str, calculation_func: callable):
        self.metric_name = metric_name
        self.calculation_func = calculation_func

    def calculate(self, experiment: Experiment) -> float:
        """计算指标值"""
        return self.calculation_func(experiment)

# 使用示例
def sharpe_ratio_calculator(experiment):
    """计算夏普比率"""
    returns = experiment.get_returns()
    if len(returns) == 0 or returns.std() == 0:
        return 0.0
    return returns.mean() / returns.std() * np.sqrt(252)

def max_drawdown_calculator(experiment):
    """计算最大回撤"""
    cumulative_returns = (1 + experiment.get_returns()).cumprod()
    running_max = cumulative_returns.expanding().max()
    drawdown = (cumulative_returns - running_max) / running_max
    return -drawdown.min()  # 返回正值

# 创建自定义评估器
metrics_config = {
    'weights': {
        'sharpe_ratio': 0.4,
        'max_drawdown': 0.3,
        'information_ratio': 0.3
    }
}

evaluator = MultiMetricEvaluator(metrics_config)
evaluator.add_metric_calculator('sharpe_ratio', sharpe_ratio_calculator)
evaluator.add_metric_calculator('max_drawdown', max_drawdown_calculator)
Enter fullscreen mode Exit fullscreen mode

知识库管理

知识库优化策略:

class KnowledgeBaseManager:
    """知识库管理器"""

    def __init__(self, config: dict):
        self.config = config
        self.knowledge_store = {}
        self.embedding_cache = {}
        self.access_frequency = defaultdict(int)
        self.last_access_time = {}

    def add_knowledge(self, knowledge_item: KnowledgeItem):
        """添加知识项"""
        # 检查知识库大小限制
        if len(self.knowledge_store) >= self.config.get('max_items', 10000):
            self._cleanup_knowledge()

        self.knowledge_store[knowledge_item.id] = knowledge_item
        self.embedding_cache[knowledge_item.id] = knowledge_item.to_embedding()
        self.last_access_time[knowledge_item.id] = datetime.now()

    def query_knowledge(
        self,
        query: str,
        top_k: int = 10,
        similarity_threshold: float = 0.7
    ) -> List[KnowledgeItem]:
        """查询相关知识"""
        query_embedding = self._get_query_embedding(query)
        similarities = {}

        for item_id, item_embedding in self.embedding_cache.items():
            similarity = cosine_similarity(
                query_embedding.reshape(1, -1),
                item_embedding.reshape(1, -1)
            )[0][0]

            if similarity >= similarity_threshold:
                similarities[item_id] = similarity
                self.access_frequency[item_id] += 1
                self.last_access_time[item_id] = datetime.now()

        # 按相似度排序并返回top-k
        sorted_items = sorted(
            similarities.items(),
            key=lambda x: x[1],
            reverse=True
        )[:top_k]

        return [self.knowledge_store[item_id] for item_id, _ in sorted_items]

    def _cleanup_knowledge(self):
        """清理知识库"""
        cleanup_count = int(len(self.knowledge_store) * 0.1)  # 清理10%

        # 基于访问频率和时间的综合评分
        scores = {}
        current_time = datetime.now()

        for item_id, knowledge_item in self.knowledge_store.items():
            frequency_score = self.access_frequency[item_id]
            time_score = (
                current_time - self.last_access_time[item_id]
            ).days
            effectiveness_score = knowledge_item.success_rate

            # 综合评分(频率高、时间近、效果好的得分高)
            composite_score = (
                frequency_score * 0.4 +
                effectiveness_score * 0.4 -
                time_score * 0.2
            )
            scores[item_id] = composite_score

        # 删除评分最低的项目
        items_to_remove = sorted(
            scores.items(),
            key=lambda x: x[1]
        )[:cleanup_count]

        for item_id, _ in items_to_remove:
            del self.knowledge_store[item_id]
            del self.embedding_cache[item_id]
            del self.access_frequency[item_id]
            del self.last_access_time[item_id]

        logger.info(f"清理了 {cleanup_count} 个知识项")
Enter fullscreen mode Exit fullscreen mode

多代理协作机制

研究代理职责

class ResearchAgent:
    """研究代理 - 负责假设生成和策略规划"""

    def __init__(self, knowledge_base: KnowledgeBase):
        self.knowledge_base = knowledge_base
        self.hypothesis_generator = HypothesisGenerator()
        self.strategy_planner = StrategyPlanner()

    def generate_hypotheses(self, problem_context: dict) -> List[Hypothesis]:
        """生成研究假设"""
        # 从知识库检索相关理论
        relevant_knowledge = self.knowledge_base.query(
            problem_context['description']
        )

        # 基于领域知识生成假设
        hypotheses = []
        for knowledge_item in relevant_knowledge:
            hypothesis = self.hypothesis_generator.generate_from_knowledge(
                knowledge_item, problem_context
            )
            hypotheses.append(hypothesis)

        # 生成创新假设
        novel_hypotheses = self.hypothesis_generator.generate_novel(
            problem_context, existing_hypotheses=hypotheses
        )
        hypotheses.extend(novel_hypotheses)

        return self.rank_hypotheses(hypotheses)

    def plan_research_strategy(self, hypothesis: Hypothesis) -> ResearchPlan:
        """规划研究策略"""
        return self.strategy_planner.create_plan(
            hypothesis=hypothesis,
            available_resources=self.get_available_resources(),
            time_constraints=self.get_time_constraints()
        )
Enter fullscreen mode Exit fullscreen mode

开发代理功能

class DevelopmentAgent:
    """开发代理 - 负责代码实现和测试验证"""

    def __init__(self, code_generator: CodeGenerator, validator: CodeValidator):
        self.code_generator = code_generator
        self.validator = validator
        self.implementation_cache = {}

    def implement_hypothesis(self, hypothesis: Hypothesis) -> Implementation:
        """实现研究假设"""
        # 生成实现代码
        implementation_code = self.code_generator.generate_code(
            specification=hypothesis.specification,
            constraints=hypothesis.constraints
        )

        # 验证代码正确性
        validation_result = self.validator.validate(implementation_code)

        if not validation_result.is_valid:
            # 修复代码问题
            fixed_code = self.code_generator.fix_issues(
                implementation_code,
                validation_result.issues
            )
            implementation_code = fixed_code

        # 创建实现对象
        implementation = Implementation(
            code=implementation_code,
            hypothesis=hypothesis,
            validation_result=validation_result
        )

        # 缓存实现
        self.implementation_cache[hypothesis.id] = implementation

        return implementation

    def optimize_implementation(
        self,
        implementation: Implementation,
        feedback: Feedback
    ) -> Implementation:
        """基于反馈优化实现"""
        optimization_suggestions = self.analyze_feedback(feedback)

        optimized_code = self.code_generator.optimize_code(
            implementation.code,
            optimization_suggestions
        )

        return Implementation(
            code=optimized_code,
            hypothesis=implementation.hypothesis,
            parent_implementation=implementation
        )
Enter fullscreen mode Exit fullscreen mode

代理间通信协议

class AgentCommunicationProtocol:
    """代理间通信协议"""

    def __init__(self):
        self.message_queue = {}
        self.subscriptions = defaultdict(list)
        self.message_handlers = {}

    def register_agent(self, agent_id: str, agent: Agent):
        """注册代理"""
        self.message_queue[agent_id] = []
        agent.set_communication_protocol(self)

    def subscribe(self, agent_id: str, message_type: str):
        """订阅消息类型"""
        self.subscriptions[message_type].append(agent_id)

    def publish(self, sender_id: str, message_type: str, message: dict):
        """发布消息"""
        # 添加消息元数据
        full_message = {
            'sender': sender_id,
            'type': message_type,
            'timestamp': datetime.now(),
            'content': message
        }

        # 发送给所有订阅者
        for subscriber_id in self.subscriptions[message_type]:
            if subscriber_id != sender_id:  # 不发送给自己
                self.message_queue[subscriber_id].append(full_message)

    def get_messages(self, agent_id: str) -> List[dict]:
        """获取代理的消息"""
        messages = self.message_queue.get(agent_id, [])
        self.message_queue[agent_id] = []  # 清空队列
        return messages

class CollaborativeWorkflow:
    """协作工作流"""

    def __init__(self, agents: List[Agent], protocol: AgentCommunicationProtocol):
        self.agents = {agent.id: agent for agent in agents}
        self.protocol = protocol
        self.workflow_state = WorkflowState.INITIALIZED

    def execute_collaborative_task(self, task: CollaborativeTask):
        """执行协作任务"""
        # 分解任务
        subtasks = self.decompose_task(task)

        # 分配子任务给合适的代理
        task_assignments = self.assign_tasks(subtasks)

        # 执行子任务
        results = {}
        for agent_id, assigned_tasks in task_assignments.items():
            agent = self.agents[agent_id]
            agent_results = agent.execute_tasks(assigned_tasks)
            results[agent_id] = agent_results

        # 协调和整合结果
        integrated_result = self.integrate_results(results)

        return integrated_result

    def coordinate_agents(self):
        """协调代理活动"""
        # 处理代理间消息
        for agent_id, agent in self.agents.items():
            messages = self.protocol.get_messages(agent_id)
            if messages:
                agent.process_messages(messages)

        # 检查是否需要协调
        coordination_needed = self.check_coordination_needs()
        if coordination_needed:
            self.perform_coordination()
Enter fullscreen mode Exit fullscreen mode

本章内容展示了 RD-Agent 的高级功能和深度定制能力,包括量化金融代理的专业功能、CoSTEER 演进框架的核心机制,以及多代理协作的实现方法。下一章我们将通过实战案例来演示这些高级功能的具体应用。

Top comments (0)