DEV Community

hwangs12
hwangs12

Posted on

Proof by Induction

Statement

xnyn=(xy)(xn1+xn2y++xyn2+yn1) x^n - y^n = (x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})

Proof

Suppose n=1:

xy=(xy)1=xy x - y = (x-y)*1 = x-y

Suppose the statement is true for all k < n:

(xkyk)(x+y)=xk+1+xkyxykyk+1 \quad (x^k - y^k)(x + y) = x^{k+1} + x^ky - xy^k - y^{k+1}

xk+1yk+1=(xkyk)(x+y)xky+xyk \quad x^{k+1} - y^{k+1} = (x^k - y^k)(x+y)-x^ky+xy^k

xk+1yk+1=(xy)(xk1+xk2y+xyk2+yk1)(x+y)xy(xk1+yk1) \quad x^{k+1} - y^{k+1} = (x-y)(x^{k-1} + x^{k-2}y \cdots + xy^{k-2} + y^{k-1})(x+y)-xy(x^{k-1}+y^{k-1})

xk+1yk+1=(xy)(xk1+xk2y+xyk2+yk1)(x+y)xy(xk1yk1) \quad x^{k+1} - y^{k+1} = (x-y)(x^{k-1} + x^{k-2}y \cdots + xy^{k-2} + y^{k-1})(x+y)-xy(x^{k-1}-y^{k-1})

xk+1yk+1=(xy)(xk1+xk2y+xyk2+yk1)(x+y)xy(xy)(xk2+xk3y++xyk3+yk2) \quad x^{k+1} - y^{k+1} = (x-y)(x^{k-1} + x^{k-2}y \cdots + xy^{k-2} + y^{k-1})(x+y)-xy(x-y)(x^{k-2}+x^{k-3}y+\cdots+xy^{k-3}+y^{k-2})

xk+1yk+1=(xy)(xk1+xk2y+xyk2+yk1)(x+y)(xy)(xk1+xk2y2++x2yk2+yk1) \quad x^{k+1} - y^{k+1} = (x-y)(x^{k-1} + x^{k-2}y \cdots + xy^{k-2} + y^{k-1})(x+y)-(x-y)(x^{k-1}+x^{k-2}y^2+\cdots+x^2y^{k-2}+y^{k-1})

xk+1yk+1=(xy)(xk+xk1y++x2yk2+xyk1+xk1y+xk2y2++xyk1+ykxk1yxk2y2x2yk2xyk1) \quad x^{k+1} - y^{k+1} = (x-y)(x^k+x^{k-1}y+\cdots+x^2y^{k-2}+xy^{k-1}+x^{k-1}y+x^{k-2}y^2+\cdots+xy^{k-1}+y^k-x^{k-1}y-x^{k-2}y^2-\cdots-x^2y^{k-2}-xy^{k-1})

xk+1yk+1=(xy)(xk+xk1y++x2yk2+xyk1+yk) \quad x^{k+1} - y^{k+1} = (x-y)(x^k+x^{k-1}y+\cdots+x^2y^{k-2}+xy^{k-1}+y^k) \blacksquare

Top comments (0)