Downloading a model from Ollama or similar platforms (like Hugging Face, TensorFlow Hub, etc.) gives you access to more than just a file labeled “model.” These packages contain several components that allow the model to be executed, fine-tuned, or embedded in applications.
Let’s break it down into a clear structure, so you can understand, dissect, and even modify the model effectively.
🔹 1) What You Get When You Download a Model
A typical downloaded model (especially from Ollama, Hugging Face, etc.) consists of the following main components:
✅ A. Model Weights (Parameters)
Usually large binary files (e.g., .bin, .pt, .safetensors, .ckpt).
These contain the actual learned values (neurons, weights, biases) from training.
Cannot run the model without this.
Example:
pytorch_model.bin – For PyTorch
ggml-model-q4_0.bin – Quantized weights used in Ollama and llama.cpp
✅ B. Model Architecture / Config File
Defines the structure of the model (number of layers, hidden units, attention heads, etc.).
Often in a .json or .yaml file.
Example:
- config.json – Specifies transformer type, vocabulary size, hidden dimensions, etc.
✅ C. Tokenizer Files
Preprocessing logic that turns text into tokens and vice versa.
Includes vocabulary (vocab.json), merges (merges.txt), or tokenizer config.
Example:
tokenizer.json
vocab.txt
merges.txt
tokenizer_config.json
✅ D. Generation Scripts or Runners
Python or binary files that allow you to run the model (with inference loops, prompts, sampling settings, etc.).
Ollama wraps this in a unified runtime using Modelfile and its CLI.
In frameworks like Hugging Face:
run_generation.py
model.py
✅ E. Quantization Information (Optional)
If you're using a quantized model (like from llama.cpp or ggml), there may be metadata about how the weights are compressed.
Affects performance and memory usage.
✅ F. Prompt Templates / System Instructions (Optional in LLMs)
Ollama models often include template prompts (like system, user, assistant roles).
These guide how prompts are injected before inference.
🔹 2) How You Can Divide and Understand It
Component | Purpose | Editable? | Tool Used |
---|---|---|---|
Model Weights | Learned knowledge of the model | ❌ Not easily editable | Python, llama.cpp , Ollama |
Config/Architecture | Structure of the neural network | ✅ Yes | Text editor |
Tokenizer | Converts words into model-readable format | ✅ Yes | Hugging Face, tiktoken
|
Prompt Templates | Controls the input prompt formatting | ✅ Yes |
Modelfile in Ollama |
Quantization Info | Enables smaller model sizes and faster runs | ✅ Yes (with tools) |
llama.cpp , ggml
|
🔹 3) If You're Using Ollama
When you ollama pull llama3, for example, behind the scenes it downloads a model package that contains:
✅ A quantized binary model file (.bin)
✅ A Modelfile (like a Dockerfile for models)
✅ Prompt format templates (like system, user, etc.)
You can run
ollama show llama3
To inspect the components and configuration.
🔹 4) How to Empower Yourself
Here’s how you can gain deeper control:
Goal | What to Learn |
---|---|
Fine-tune a model | Hugging Face Transformers, PyTorch/TF basics |
Quantize for performance |
ggml , llama.cpp , GPTQ , bitsandbytes
|
Build custom prompts | Prompt engineering, prompt templates in Ollama |
Modify architecture | Learn model config files (config.json ) |
Tokenizer tuning or replacement |
tokenizers library, vocab files |
🔹 Summary Diagram
Downloaded Model
┌──────────────────────┐
│ Model Weights │ (.bin, .pt, .safetensors)
└──────────────────────┘
┌──────────────────────┐
│ Config / Architecture│ (config.json)
└──────────────────────┘
┌──────────────────────┐
│ Tokenizer Files │ (vocab.json, merges.txt)
└──────────────────────┘
┌──────────────────────┐
│ Prompt Templates │ (system, user format)
└──────────────────────┘
┌──────────────────────┐
│ Runner / Wrapper │ (Modelfile, Python scripts)
└──────────────────────┘
┌──────────────────────┐
│ Quantization Metadata│ (quant-info.json, ggml meta)
└──────────────────────┘
Top comments (0)