DEV Community

Cover image for Custom attribute animation
liu yang
liu yang

Posted on

Custom attribute animation

Frame-by-Frame Layout and Shape Animation in ArkUI

Frame-by-Frame Layout with Text Component

This example demonstrates how to use the @AnimatableExtend decorator and the number data type to create a frame-by-frame layout effect by animating the width of a Text component.

Step-by-Step Explanation

  1. Custom Animatable Property: The @AnimatableExtend decorator is used to extend the Text component with a custom animatable property animatableWidth.

  2. Animation Setup: The animation method is called on the Text component to bind an animation to the custom property. This animation will control how the width changes over time.

  3. Triggering Animation: A Button component is used to toggle the width of the Text component. When clicked, it changes the textWidth state variable, triggering the animation.

Code Example

// Step 1: Use the @AnimatableExtend decorator to define a custom animatable property interface
@AnimatableExtend(Text)
function animatableWidth(width: number) {
  return { width }; // Calls the system property interface. The frame-by-frame callback function modifies the animatable property value each frame to achieve a frame-by-frame layout effect.
}

@Entry
@Component
struct AnimatablePropertyExample {
  @State textWidth: number = 80;

  build() {
    Column() {
      Text("AnimatableProperty")
        .animatableWidth(this.textWidth) // Step 2: Set the custom animatable property interface on the component
        .animation({ duration: 2000, curve: Curve.Ease }) // Step 3: Bind an animation to the custom animatable property
      Button("Play")
        .onClick(() => {
          this.textWidth = this.textWidth === 80 ? 160 : 80; // Step 4: Change the custom animatable property parameter to trigger the animation
        })
    }.width("100%")
    .padding(10)
  }
}
Enter fullscreen mode Exit fullscreen mode

Shape Animation with Custom Data Types

This example illustrates how to use the @AnimatableExtend decorator with custom data types to animate the shape of a Polyline component.

Key Concepts

  • Custom Data Types: The Point and PointVector classes are defined to represent points and a collection of points, respectively.
  • Animation Arithmetic: The PointClass and PointVector implement the AnimatableArithmetic interface to define how points can be added, subtracted, multiplied, and compared.
  • Custom Animatable Property: The animatablePoints function extends the Polyline component to accept a PointVector as an animatable property.

Code Example

declare type Point = number[];

// Define the parameter type for the animatable property interface and implement the AnimatableArithmetic<T> interface's addition, subtraction, multiplication, and equality check functions
class PointClass extends Array<number> {
  constructor(value: Point) {
    super(value[0], value[1]);
  }

  add(rhs: PointClass): PointClass {
    const result: Point = new Array<number>();
    for (let i = 0; i < 2; i++) {
      result.push(rhs[i] + this[i]);
    }
    return new PointClass(result);
  }

  subtract(rhs: PointClass): PointClass {
    const result: Point = new Array<number>();
    for (let i = 0; i < 2; i++) {
      result.push(this[i] - rhs[i]);
    }
    return new PointClass(result);
  }

  multiply(scale: number): PointClass {
    const result: Point = new Array<number>();
    for (let i = 0; i < 2; i++) {
      result.push(this[i] * scale);
    }
    return new PointClass(result);
  }
}

// Define the parameter type for the animatable property interface and implement the AnimatableArithmetic<T> interface's addition, subtraction, multiplication, and equality check functions
// Template T supports nested types that implement AnimatableArithmetic<T>
class PointVector extends Array<PointClass> implements AnimatableArithmetic<Array<Point>> {
  constructor(initialValue: Array<Point>) {
    super();
    if (initialValue.length) {
      initialValue.forEach((p: Point) => this.push(new PointClass(p)));
    }
  }

  // Implement the IAnimatableArithmetic interface
  plus(rhs: PointVector): PointVector {
    const result = new PointVector([]);
    const len = Math.min(this.length, rhs.length);
    for (let i = 0; i < len; i++) {
      result.push(this[i].add(rhs[i]));
    }
    return result;
  }

  subtract(rhs: PointVector): PointVector {
    const result = new PointVector([]);
    const len = Math.min(this.length, rhs.length);
    for (let i = 0; i < len; i++) {
      result.push(this[i].subtract(rhs[i]));
    }
    return result;
  }

  multiply(scale: number): PointVector {
    const result = new PointVector([]);
    for (let i = 0; i < this.length; i++) {
      result.push(this[i].multiply(scale));
    }
    return result;
  }

  equals(rhs: PointVector): boolean {
    if (this.length !== rhs.length) {
      return false;
    }
    for (let i = 0; i < this.length; i++) {
      if (this[i][0] !== rhs[i][0] || this[i][1] !== rhs[i][1]) {
        return false;
      }
    }
    return true;
  }
}

// Custom animatable property interface
@AnimatableExtend(Polyline)
function animatablePoints(points: PointVector) {
  return { points }; // Calls the system property interface. The frame-by-frame callback function modifies the animatable property value each frame to achieve a frame-by-frame layout effect.
}

@Entry
@Component
struct AnimatedShape {
  squareStartPointX: number = 75;
  squareStartPointY: number = 25;
  squareWidth: number = 150;
  squareEndTranslateX: number = 50;
  squareEndTranslateY: number = 50;
  @State pointVec1: PointVector = new PointVector([
    [this.squareStartPointX, this.squareStartPointY],
    [this.squareStartPointX + this.squareWidth, this.squareStartPointY],
    [this.squareStartPointX + this.squareWidth, this.squareStartPointY + this.squareWidth],
    [this.squareStartPointX, this.squareStartPointY + this.squareWidth],
  ]);
  @State pointVec2: PointVector = new PointVector([
    [this.squareStartPointX + this.squareEndTranslateX, this.squareStartPointY + this.squareStartPointY],
    [this.squareStartPointX + this.squareWidth + this.squareEndTranslateX, this.squareStartPointY + this.squareStartPointY],
    [this.squareStartPointX + this.squareWidth, this.squareStartPointY + this.squareWidth],
    [this.squareStartPointX, this.squareStartPointY + this.squareWidth],
  ]);
  @State polyline1Vec: PointVector = this.pointVec1;

  build() {
    Row() {
      Polyline()
        .width(300)
        .height(200)
        .backgroundColor("#0C000000")
        .fill('#317AF7')
        .animatablePoints(this.polyline1Vec)
        .animation({ duration: 2000, delay: 0, curve: Curve.Ease })
        .onClick(() => {
          if (this.polyline1Vec.equals(this.pointVec1)) {
            this.polyline1Vec = this.pointVec2;
          } else {
            this.polyline1Vec = this.pointVec1;
          }
        })
    }
    .width('100%')
    .height('100%')
    .justifyContent(FlexAlign.Center)
  }
}
Enter fullscreen mode Exit fullscreen mode

Top comments (0)