DEV Community

Narayan
Narayan

Posted on

๐Ÿ”ฅ Single Biggest Idea Behind Polars Isn't Rust โ€” It's LAZY ๐Ÿ”ฅ Part(2/5)

If you're still processing data in sequential steps (Pandas-style), you're missing out on 90% of Polars' performance gains.

This is the core difference: Eager vs. Lazy. Understanding this makes the Expression API click.

โŒ ๐“๐‡๐„ ๐„๐€๐†๐„๐‘ (๐๐€๐๐ƒ๐€๐’) ๐–๐€๐˜: ๐„๐ฑ๐ž๐œ๐ฎ๐ญ๐ž ๐ˆ๐ฆ๐ฆ๐ž๐๐ข๐š๐ญ๐ž๐ฅ๐ฒ

Every line runs instantly, creating a new DataFrame in memory at each step.

import pandas as pd
df = pd.read_csv("large_file.csv") # 1. Loads ALL columns
df['doubled'] = df['new_val'] * 2 # 2. Creates new copy
df = df.groupby('category').sum() # 3. Final compute

๐Ÿšจ Result: Huge memory footprint, wasted I/O, no query optimization.

โœ… ๐“๐‡๐„ ๐‹๐€๐™๐˜ (๐๐Ž๐‹๐€๐‘๐’) ๐–๐€๐˜: ๐๐ฅ๐š๐ง ๐…๐ข๐ซ๐’๐ญ, ๐„๐ฑ๐ž๐œ๐ฎ๐ญ๐ž ๐Ž๐ง๐œ๐„

Polars records all operations, builds an optimized plan, and only runs when you call .collect(). This unlocks QUERY OPTIMIZATION.

๐ŸŽฏ The Two-Step Dance:

Step 1: Define the Plan (LazyFrame). Nothing runs yet.
import polars as pl
q = (
pl.scan_csv("large_file.csv")
.filter(pl.col("value") > 100)
.with_columns(
(pl.col("new_val") * 2).alias("doubled")
)
.group_by("category")
.agg(pl.col("doubled").sum())
)

Step 2: Execute the Optimized Plan.
result = q.collect()

๐Ÿง  ๐–๐‡๐€๐“ ๐“๐‡๐„ ๐๐”๐„๐‘๐˜ ๐Ž๐๐“๐ˆ๐Œ๐ˆZ๐„๐‘ ๐ƒ๐Ž๐„๐’

Polars applies transformations to your plan:

  1. Projection Pushdown: Only read the columns you use.
  2. Predicate Pushdown: Filter rows while reading the CSV (skip rows at the source).
  3. Expression Fusion: Combine multiple operations into a single, efficient kernel (no intermediate copies).

๐Ÿ’ฐ ๐‘๐„๐€๐‹-๐–๐Ž๐‘๐‹๐ƒ ๐ˆ๐Œ๐๐€๐‚๐“ (10๐†๐ ๐‚๐’๐• ๐๐ž๐ง๐œ๐ก๐ฆ๐š๐ซ๐ค)

Metric Pandas (Eager) Polars (Lazy)
Time ~8 minutes ~45 seconds (10x faster)
Memory 12GB peak 2GB peak (6x less)

Why the difference? Polars only loaded what it needed, filtered while reading, and fused operations.

๐Ÿ”‘ ๐Š๐„๐˜ ๐“๐€๐Š๐„๐€๐–๐€๐˜

Lazy evaluation is why Polars is fast. The speedups come from:

  1. Loading only what you need.
  2. Filtering at the source.
  3. Fusing operations.

DataEngineering #Polars #Python #DataScience #DataAnalytics

Top comments (0)