Passing Information to a Method or a Constructor
The declaration for a method or a constructor declares the number and the type of the arguments for that method or constructor. For example, the following is a method that computes the monthly payments for a home loan, based on the amount of the loan, the interest rate, the length of the loan (the number of periods), and the future value of the loan:
Parameter: Variable in method definition (String notice)
Argument: Actual value passed when calling ("Smart Meter")
public double computePayment(
double loanAmt,
double rate,
double futureValue,
int numPeriods) {
double interest = rate / 100.0;
double partial1 = Math.pow((1 + interest),
- numPeriods);
double denominator = (1 - partial1) / interest;
double answer = (-loanAmt / denominator)
- ((futureValue * partial1) / denominator);
return answer;
}
This method has four parameters: the loan amount, the interest rate, the future value and the number of periods. The first three are double-precision floating point numbers, and the fourth is an integer. The parameters are used in the method body and at runtime will take on the values of the arguments that are passed in.
Parameter Types
You can use any data type for a parameter of a method or a constructor. This includes primitive data types, such as doubles, floats, and integers, as you saw in the computePayment method, and reference data types, such as objects and arrays.
Here's an example of a method that accepts an array as an argument. In this example, the method creates a new Polygon object and [TBD]initializes it from an array of Point objects (assume that Point is a class that represents an x, y coordinate):
public Polygon polygonFrom(Point[] corners) {
// method body goes here
}
Parameter Names
When you declare a parameter to a method or a constructor, you provide a name for that parameter. This name is used within the method body to refer to the passed-in argument.
The name of a parameter must be unique in its scope. It cannot be the same as the name of another parameter for the same method or constructor, and it cannot be the name of a local variable within the method or constructor.[TBD]
A parameter can have the same name as one of the class's fields. If this is the case, the parameter is said to shadow the field. Shadowing fields can make your code difficult to read and is conventionally used only within constructors and methods that set a particular field. For example, consider the following Circle class and its setOrigin method:
public class Circle {
private int x, y, radius;
public void setOrigin(int x, int y) {
...
}
}
The Circle class has three fields: x, y, and radius. The setOrigin method has two parameters, each of which has the same name as one of the fields. Each method parameter shadows the field that shares its name. So using the simple names x or y within the body of the method refers to the parameter, not to the field. To access the field, you must use a qualified name. This will be discussed later in this lesson in the section titled "Using the this Keyword."[TBD]
Passing Primitive Data Type Arguments
Primitive arguments, such as an int or a double, are passed into methods by value. This means that any changes to the values of the parameters exist only within the scope of the method. When the method returns, the parameters are gone and any changes to them are lost. Here is an example:
public class PassPrimitiveByValue {
public static void main(String[] args) {
int x = 3;
// invoke passMethod() with
// x as argument
passMethod(x);
// print x to see if its
// value has changed
System.out.println("After invoking passMethod, x = " + x);
}
// change parameter in passMethod()
public static void passMethod(int p) {
p = 10;
}
}
When you run this program, the output is:
After invoking passMethod, x = 3
** Passing Reference Data Type Arguments**
Reference data type parameters, such as objects, are also passed into methods by value. This means that when the method returns, the passed-in reference still references the same object as before. However, the values of the object's fields can be changed in the method, if they have the proper access level.[TBD]
For example, consider a method in an arbitrary class that moves Circle objects:
public void moveCircle(Circle circle, int deltaX, int deltaY) {
// code to move origin of circle to x+deltaX, y+deltaY
circle.setX(circle.getX() + deltaX);
circle.setY(circle.getY() + deltaY);
// code to assign a new reference to circle
circle = new Circle(0, 0);
}
Defining Methods
Here is an example of a typical method declaration:
public double calculateAnswer(double wingSpan, int numberOfEngines,
double length, double grossTons) {
//do the calculation here
}
The only required elements of a method declaration are the method's return type, name, a pair of parentheses, (), and a body between braces, {}.
More generally, method declarations have six components, in order:
- Modifiers—such as public, private, and others you will learn about later.
- The return type—the data type of the value returned by the method, or void if the method does not return a value.
- The method name—the rules for field names apply to method names as well, but the convention is a little different.
- The parameter list in parenthesis—a comma-delimited list of input parameters, preceded by their data types, enclosed by parentheses, (). If there are no parameters, you must use empty parentheses.
- An exception list—to be discussed later.
- The method body, enclosed between braces—the method's code, including the declaration of local variables, goes here.
Overloading Methods
The Java programming language supports overloading methods, and Java can distinguish between methods with different method signatures. This means that methods within a class can have the same name if they have different parameter lists (there are some qualifications to this that will be discussed in the lesson titled "Interfaces and Inheritance").
Suppose that you have a class that can use calligraphy to draw various types of data (strings, integers, and so on) and that contains a method for drawing each data type. It is cumbersome to use a new name for each method—for example, drawString, drawInteger, drawFloat, and so on. In the Java programming language, you can use the same name for all the drawing methods but pass a different argument list to each method. Thus, the data drawing class might declare four methods named draw, each of which has a different parameter list.[TBD]
public class DataArtist {
...
public void draw(String s) {
...
}
public void draw(int i) {
...
}
public void draw(double f) {
...
}
public void draw(int i, double f) {
...
}
}
Overloaded methods are differentiated by the number and the type of the arguments passed into the method. In the code sample, draw(String s) and draw(int i) are distinct and unique methods because they require different argument types
Polymorphism
The dictionary definition of polymorphism refers to a principle in biology in which an organism or species can have many different forms or stages. This principle can also be applied to object-oriented programming and languages like the Java language. Subclasses of a class can define their own unique behaviors and yet share some of the same functionality of the parent class.
Polymorphism can be demonstrated with a minor modification to the Bicycle class. For example, a printDescription method could be added to the class that displays all the data currently stored in an instance.[TBD]
public void printDescription(){
System.out.println("\nBike is " + "in gear " + this.gear
+ " with a cadence of " + this.cadence +
" and travelling at a speed of " + this.speed + ". ");
}
To demonstrate polymorphic features in the Java language, extend the Bicycle class with a MountainBike and a RoadBike class. For MountainBike, add a field for suspension, which is a String value that indicates if the bike has a front shock absorber, Front. Or, the bike has a front and back shock absorber, Dual.[TBD]
Reference link:
https://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
Top comments (0)