If you are managing multiple React applications and want consistency across your user interfaces, sooner or later you'll find that you need a component library.
When I first wanted to create a React component library, it took me a lot of time to find a setup that met all my requirements and wasn't too complicated.
A guide like this would've spared me a great amount of energy wrestling with this stuff myself. I hope it can help you as much as it would have helped me.
This post covers setting up and publishing a React component library, including configuring your build process and publishing your package to npm so you and/or others can use it.
I've done my best to keep all configurations simple and concise, using default settings whenever possible.
When you are done, you can install your library like any other npm package:
npm install @username/my-component-library
And use it like:
import { Button } from `@username/my-component-library`;
function MyComponent() {
return <Button>Click me!</Button>
}
Before we start
Before we dig into the implementation details, I would like to elaborate on some technical details regarding the setup of the library.
🌳 Fully tree shakeable
For me it was particularly important that only necessary code ends up in the final application. When you import a component, it only includes the necessary JS and CSS styles. Pretty cool, right?
🦑 Compiled CSS modules
The components are styled with CSS modules. When building the library, these styles will get transformed to normal CSS style sheets. This means that the consuming application will not even be required to support CSS modules.
As a bonus compiling the CSS modules avoids a compatibility issue and the package can be consumed in both, environments that support named imports for CSS modules, and environments that don't.
🧁 If you are interested in using vanilla-extract instead of CSS modules you can find a branch with vanilla extract at the bottom of the article.
😎 TypeScript
While the library is written in TypeScript, it can be consumed in any "normal" JavaScript project as well. If you never used TypeScript before, give it a try. It not only forces you to write cleaner code, but also helps your AI coding assistant make better suggestions 😉
OK enough reading, now let's have some fun!
1. Setup a new Vite project
If you have never worked with Vite, think of it as a replacement for Create React App. Just a few commands and you are ready to go.
npm create vite@latest
? Project name: › my-component-library
? Select a framework: › React
? Select a variant: › TypeScript
cd my-component-library
npm i
That's it, your new Vite/React project is ready to go.
Here are two things I recommend you to do right after installing Vite.
2. Basic build setup
You can now run npm run dev
and browse to the url provided by Vite. While working on your library, this is a place where you can easily import your library and actually see your components. Think of all code inside the src
folder as your demo page.
The actual library code will reside in another folder. Let's create this folder and name it lib
. You could also name it differently, but lib
is a solid choice.
The main entry point of your library will be a file named main.ts
inside of lib
. When installing the library you can import everything that is exported from this file.
📂my-component-library
+┣ 📂lib
+┃ ┗ 📜main.ts
┣ 📂public
┣ 📂src
…
Vite Library Mode
At this time, if you build the project with npm run build
Vite will transpile the code inside src
to the dist
folder. This is default Vite behavior.
For now you will use the demo page for development purposes only. So there is no need to transpile this part of the project yet. Instead you want to transpile and ship the code inside of lib
.
This is where Vite's Library Mode comes into play. It was designed specifically for building/transpiling libraries. To activate this mode, simply specify your library entry point in vite.config.ts.
Like so:
import { defineConfig } from 'vite'
+ import { resolve } from 'path'
import react from '@vitejs/plugin-react'
export default defineConfig({
plugins: [react()],
+ build: {
+ lib: {
+ entry: resolve(__dirname, 'lib/main.ts'),
+ formats: ['es']
+ }
}
})
💡 The default formats are
'es'
and'umd'
. For your component library 'es' is all you need. This also removes the necessity for adding thename
property.💡 If your TypeScript linter complains about
'path'
and__dirname
just install the types for node:npm i @types/node -D
TypeScript and library mode
The tsconfig.json
created by Vite only includes the folder src
. To enable TypeScript for your newly created lib
folder as well you need to add it to the TypeScript configuration file like this:
- "include": ["src"],
+ "include": ["src", "lib"],
Although TypeScript needs to be enabled for both the src
and lib
folders, it is better to not include src
when building the library.
To ensure only the lib
directory is included during the build process you can create a separate TypeScript configuration file specifically for building.
💡 Implementing this separate configuration helps avoid TypeScript errors when you import components directly from the
dist
folder on the demo page and those components haven't been built yet.⚠️ For Vite 5 please read my comment on the new Typscript config structure.
📂my-component-library
┣ …
┣ 📜tsconfig.json
+┣ 📜tsconfig-build.json
…
The only difference is that the build config includes only the lib
directory, whereas the default configuration includes both lib
and src
📜tsconfig-build.json
{
"extends": "./tsconfig.json",
"include": ["lib"]
}
To use tsconfig-build.json
for building you need to pass the configuration file to tsc
in the build script in your package.json:
"scripts": {
…
- "build": "tsc && vite build",
+ "build": "tsc --p ./tsconfig-build.json && vite build",
Finally you will also need to copy the file vite-env.d.ts
from src
to lib
. Without this file Typescript will miss some types definitions provided by Vite when building (because we don't include src
anymore).
You can now execute npm run build
once more and this is what you will see in your dist folder:
📂dist
┣ 📜my-component-library.js
┗ 📜vite.svg
💡 The name of the output file is identical with the
name
property in your package.json per default. This can be changed in the Vite config (build.lib.fileName
) but we will do something else about this later.
The file vite.svg
is in your dist
folder because Vite copies all files from the public
directory to the output folder. Let's disable this behavior:
build: {
+ copyPublicDir: false,
…
}
You can read a more detailed explanation here: Why is the file vite.svg in the dist folder?
Building the types
As this is a Typescript library you also want to ship type definitions with your package. Fortunately there is a Vite plugin that does exactly this: vite-plugin-dts
npm i vite-plugin-dts -D
Per default dts
will generate types for both src
and lib
because both folders are included in the project's .tsconfig
. This is why we need to pass one configuration parameter: include: ['lib']
.
// vite.config.ts
+import dts from 'vite-plugin-dts'
…
plugins: [
react(),
+ dts({ include: ['lib'] })
],
…
💡 It would also work to
exclude: ['src']
or use a different Typescript config file for building.
To test things out, let's add some actual code to your library. Open lib/main.ts
and export something, for example:
lib/main.ts
export function helloAnything(thing: string): string {
return `Hello ${thing}!`
}
Then run npm run build
to transpile your code. If the content of your dist
folder looks like below you should be all set 🥳:
📂dist
┣ 📜main.d.ts
┗ 📜my-component-library.js
💡 Don't be shy, open the files and see what the program did for you!
3. What is a React component library without components?
We didn't do all of this just to export a helloAnything
function. So let's add some meat 🍖 (or tofu 🌱 or both) to our library.
Let's go with three very common basic components: A button, a label, and a text input.
📂my-component-library
┣ 📂lib
+┃ ┣ 📂components
+┃ ┃ ┣ 📂Button
+┃ ┃ ┃ ┗ 📜index.tsx
+┃ ┃ ┣ 📂Input
+┃ ┃ ┃ ┗ 📜index.tsx
+┃ ┃ ┗ 📂Label
+┃ ┃ ┗ 📜index.tsx
┃ ┗ 📜main.ts
…
And a very basic implementation for these components:
// lib/components/Button/index.tsx
export function Button(props: React.ButtonHTMLAttributes<HTMLButtonElement>) {
return <button {...props} />
}
// lib/components/Input/index.tsx
export function Input(props: React.InputHTMLAttributes<HTMLInputElement>) {
return <input {...props} />
}
// lib/components/Label/index.tsx
export function Label(props: React.LabelHTMLAttributes<HTMLLabelElement>) {
return <label {...props} />
}
Finally export the components from the library's main file:
// lib/main.ts
export { Button } from './components/Button'
export { Input } from './components/Input'
export { Label } from './components/Label'
If you npm run build
again you will notice that the transpiled file my-component-library.js
now has 78kb 😮
The implementation of the components above contains React JSX code and therefore react
(and react/jsx-runtime
) gets bundled as well.
As this library will be used in projects that have React installed anyways, you can externalize this dependencies to remove the code from bundle:
//vite.config.ts
build: {
…
+ rollupOptions: {
+ external: ['react', 'react/jsx-runtime'],
+ }
}
4. Add some styles
As mentioned in the beginning, this library will use CSS modules to style the components.
CSS modules are supported by Vite per default. All you have to do is to create CSS files that end with .module.css
.
📂my-component-library
┣ 📂lib
┃ ┣ 📂components
┃ ┃ ┣ 📂Button
┃ ┃ ┃ ┣ 📜index.tsx
+ ┃ ┃ ┃ ┗ 📜styles.module.css
┃ ┃ ┣ 📂Input
┃ ┃ ┃ ┣ 📜index.tsx
+ ┃ ┃ ┃ ┗ 📜styles.module.css
┃ ┃ ┗ 📂Label
┃ ┃ ┣ 📜index.tsx
+ ┃ ┃ ┗ 📜styles.module.css
┃ ┗ 📜main.ts
…
And add some basic CSS classes:
/* lib/components/Button/styles.module.css */
.button {
padding: 1rem;
}
/* lib/components/Input/styles.module.css */
.input {
padding: 1rem;
}
/* lib/components/Label/styles.module.css */
.label {
font-weight: bold;
}
And import/use them inside your components eg:
import styles from './styles.module.css'
export function Button(props: React.ButtonHTMLAttributes<HTMLButtonElement>) {
const { className, ...restProps } = props
return <button className={`${className} ${styles.button}`} {...restProps} />
}
⛴️ Ship your style
After transpiling your library you will notice that there is a new file in your distribution folder:
📂dist
┣ …
┣ 📜my-component-library.js
+ ┗ 📜style.css
But there are two issues with this file:
- You need to manually import the file in the consuming application.
- It is one file that contains all styles for all components.
Import the CSS
CSS files just can't easily be imported in JavaScript. Therefore, the CSS file is generated separately, allowing the library user to decide how to handle the file.
But what if we were to assume that the application using the library has a bundler configuration that can handle CSS imports?
For this to work, the transpiled JavaScript bundle must contain an import statement for the CSS file. We are going to use yet another Vite plugin (vite-plugin-lib-inject-css) that does exactly what we need with zero configuration.
npm i vite-plugin-lib-inject-css -D
// vite.config.ts
+import { libInjectCss } from 'vite-plugin-lib-inject-css'
…
plugins: [
react(),
+ libInjectCss(),
dts({ include: ['lib'] })
],
…
Build the library and take a look at the top of your bundled JavaScript file (dist/my-component-library.js
):
// dist/my-component-library.js
import "./main.css";
…
💡 You may notice that the CSS filename has changed from style.css to main.css. This change occurs because the plugin generates a separate CSS file for each chunk, and in this case the name of the chunk comes from the filename of the entry file.
Split up the CSS
But there's still the second problem: when you import something from your library, main.css
is also imported and all the CSS styles end up in your application bundle. Even if you only import the button.
The libInjectCSS
plugin generates a separate CSS file for each chunk and includes an import statement at the beginning of each chunk's output file.
So if you split up the JavaScript code, you end up having separate CSS files that only get imported when the according JavaScript files are imported.
One way of doing this would be to turn every file into an Rollup entry point. And, it couldn't be better, there is a recommended way of doing this right in the Rollup documentation:
📘 If you want to convert a set of files to another format while maintaining the file structure and export signatures, the recommended way—instead of using output.preserveModules that may tree-shake exports as well as emit virtual files created by plugins—is to turn every file into an entry point.
So let's add this to your configuration.
First install glob
as it will be required:
npm i glob -D
Then change your Vite config to this:
// vite.config.ts
-import { resolve } from 'path'
+import { extname, relative, resolve } from 'path'
+import { fileURLToPath } from 'node:url'
+import { glob } from 'glob'
…
rollupOptions: {
external: ['react', 'react/jsx-runtime'],
+ input: Object.fromEntries(
+ glob.sync('lib/**/*.{ts,tsx}', {
+ ignore: ["lib/**/*.d.ts"],
+ }).map(file => [
+ // The name of the entry point
+ // lib/nested/foo.ts becomes nested/foo
+ relative(
+ 'lib',
+ file.slice(0, file.length - extname(file).length)
+ ),
+ // The absolute path to the entry file
+ // lib/nested/foo.ts becomes /project/lib/nested/foo.ts
+ fileURLToPath(new URL(file, import.meta.url))
+ ])
+ )
}
…
💡 The glob library helps you to specify a set of filenames. In this case it selects all files ending with
.ts
or.tsx
and ignores*.d.ts
files Glob Wikipedia
Now you end up with a bunch of JavaScript and CSS files in the root of your dist
folder. It works, but it doesn't look particularly pretty, does it?
// vite.config.ts
rollupOptions: {
…
+ output: {
+ assetFileNames: 'assets/[name][extname]',
+ entryFileNames: '[name].js',
+ }
}
…
Transpile the library again and all JavaScript files should now be in the same organized folder structure you have created in lib
alongside with their type definitions. And the CSS files are inside a new folder called assets.
Transpile the library again and all JavaScript files should now be in the same organized folder structure that you created in lib
along with their types. And the CSS files are in a new folder called "assets". 🙌
Notice that the name of the main file has changed from "my-component-library.js" to "main.js". That's great!
4. A few last steps before you can publish the package
Your build setup is now ready, there are just a few things to consider before releasing your package.
The package.json
file will get published along with your package files. And you need to make sure it contains all important information about the package.
Main file
Every npm package has a primary entry point, per default this file is index.js
in the root of the package.
Your library's primary entry point is now located at dist/main.js
, so this needs to be set in your package.json
. The same applies to the type's entry point: dist/main.d.ts
// package.json
{
"name": "my-component-library",
"private": true,
"version": "0.0.0",
"type": "module",
+ "main": "dist/main.js",
+ "types": "dist/main.d.ts",
…
Define the files to publish
You should also define which files should be packed into your distributed package.
// package.json
…
"main": "dist/main.js",
"types": "dist/main.d.ts",
+ "files": [
+ "dist"
+ ],
…
💡 Certain files like
package.json
orREADME
are always included, regardless of settings: Read the docs
Dependencies
Now take a look at your dependencies
: right now there should be only two react
and react-dom
and a couple of devDependencies
.
You can move those two to the devDepedencies
as well. And additionally add them as peerDependencies
so the consuming application is aware that it must have React installed to use this package.
// package.json
- "dependencies": {
+ "peerDependencies": {
"react": "^18.2.0",
"react-dom": "^18.2.0"
},
"devDependencies": {
+ "react": "^18.2.0",
+ "react-dom": "^18.2.0",
…
}
💡 See this StackOverflow answer to learn more about the different types of dependencies: Link
Side effects
To prevent the CSS files from being accidentally removed by the consumer's tree-shaking efforts, you should also specify the generated CSS as side effects:
// package.json
+ "sideEffects": [
+ "**/*.css"
+ ],
You can read more about sideEffects
in the webpack docs. (Originally from Webpack, this field has developed into a common pattern that is now also supported by other bundlers)
Ensure that the package is built
You can use the special lifecycle script prepublishOnly
to guarantee that your changes are always built before the package is published:
// package.json
"scripts": {
"dev": "vite",
"build": "tsc && vite build",
…
+ "prepublishOnly": "npm run build"
},
5. Demo page and deployment
To just play around with your components on the demo page, you can simply import the components directly from the root of your project. This works because your package.json
points to the transpiled main file dist/main.ts
.
src/App.tsx
…
import { Button, Label, Input } from '../';
…
To publish your package, you just need to run npm publish
. If you want to release your package to the public, you have to set private: false
in your package.json
.
You can read more about publishing your package, including installing it in a local project (without publishing) in these articles of mine:
FAQs
Can I use vanilla extract instead of CSS Modules?
Here is a branch that uses vanilla extract: https://github.com/receter/my-component-library/tree/vanilla-extract
To be able to still test your library with npm run dev
it was necessary to add an ignore
for "lib/**/*.css.ts"
in vite.config.ts
to avoid that the vanillaExtractPlugin()
acts on the compiled files.
I have an issues with the latest version of create vite
I did not yet update this article, following this guide you might run into some issues with the latest version of create vite
. I did however create a branch with some modifications to work with vite@5.4.4:
https://github.com/receter/my-component-library/tree/revision-1
Can I remove the CSS imports from the output?
Yes, you can easily remove the vite-plugin-lib-inject-css
plugin (and subsequential the sideEffects
from your package.json
)
Having done that you will get one compiled stylesheet containing all required classes in dist/assets/style.css
. Import/use this stylesheet in your application and you should be good to go.
You will of course loose the CSS treeshaking feature which is made possible by importing only the required CSS inside each component.
I published a branch demonstrating this change here: https://github.com/receter/my-component-library/tree/no-css-injection
Does this work with Next.js?
Importing CSS from external npm packages works since Next.js 13.4:
https://github.com/vercel/next.js/discussions/27953#discussioncomment-5831478
If you use an older version of Next.js you can install next-transpile-modules
Here is a Next.js demo repo: https://github.com/receter/my-nextjs-component-library-consumer
Error: Cannot find module 'ajv/dist/core'
This error will happen if you are using vite-plugin-dts@4
in combination with --legacy-peer-deps
. The solution is to install ajv@8
manually or stop using --legacy-peer-deps
.
npm i ajv@8
https://github.com/qmhc/vite-plugin-dts/issues/388
How to use Storybook for my library?
To install Storybook run npx storybook@latest init
and start adding your stories.
If you add stories inside the lib
folder you also need to make sure to exclude all .stories.tsx
files from the glob pattern so the stories don't end up in your bundle.
glob.sync('lib/**/*.{ts,tsx}', { ignore: 'lib/**/*.stories.tsx'})
I have published a branch with Storybook here: https://github.com/receter/my-component-library/tree/storybook
To be able to build Storybook you need to disable the libInjectCss
plugin. Otherwise you will run into an TypeError: Cannot convert undefined or null to object
error when running npm run build-storybook
(Thanks @codalf for figuring that out!)
Update 26.03.2024: This issue (#15) with vite-plugin-lib-inject-css
and has been fixed in version 2.0.0
and the fix is not needed anymore.
Thanks for reading!
If you did not follow along or something wasn't that clear, you can find the full source code with working examples on my GitHub Profile:
- https://github.com/receter/my-component-library
- https://github.com/receter/my-component-library/tree/revision-1 (Revision that works with latest Vite version)
- https://github.com/receter/my-component-library-consumer
- https://www.npmjs.com/package/@receter/my-component-library
Fingers crossed you found it helpful, and I'm all ears for any thoughts you'd like to share.
Oldest comments (163)
The guide discusses essential technical details, such as TypeScript integration, CSS modules, tree shaking, and peer dependencies. It covers these aspects while keeping the content concise and understandable.
Hello!
Thanks for the tutorial! It is great! Unfortunately I was not able fully finish it. After I added glob config to my vite.config.ts, the "npm run build" started to return an error:
failed to load config from ..../vite.config.ts
error during build:
file:///..../vite.config.ts.timestamp-1694619764411-22e8f4327550d.mjs:7
import glob from "file:///..../node_modules/glob/dist/mjs/index.js";
^^^^
SyntaxError: The requested module 'file:///..../node_modules/glob/dist/mjs/index.js' does not provide an export named 'default'
at ModuleJob._instantiate (node:internal/modules/esm/module_job:122:21)
at async ModuleJob.run (node:internal/modules/esm/module_job:188:5)
at async DefaultModuleLoader.import (node:internal/modules/esm/loader:228:24)
at async loadConfigFromBundledFile (file:///..../node_modules/vite/dist/node/chunks/dep-df561101.js:66235:21)
at async loadConfigFromFile (file:///..../node_modules/vite/dist/node/chunks/dep-df561101.js:66086:28)
at async resolveConfig (file:///..../node_modules/vite/dist/node/chunks/dep-df561101.js:65682:28)
at async build (file:///..../node_modules/vite/dist/node/chunks/dep-df561101.js:47852:20)
at async CAC. (file:///..../node_modules/vite/dist/node/cli.js:822:9)
I use npm version 9.8.0, nvm version 20.5.1, vite version
Best Regards,
Andrei
Hi Andrei,
thanks for your comment, I am glad you like the tutorial!
I guess you need to do a named import:
It was a "typo" in the article, I have updated it accordingly, thanks for your feedback!
Hello Andreas! Thanks a lot for the update! now everything works just perfectly!
So 3 questions.
Hi Bica,
Thanks for you comment!
copyDtsFiles
and all your d.ts files will get copied to the output.I also noticed that for each d.ts file an empty d.js file is created. This is not wanted and you can fix it by changing the glob to
lib/**/!(*.d).{ts,tsx}
:Here is a branch that uses global types: github.com/receter/my-component-li...
You need to export all components that you want to expose to the outside. If you have a component that is only used internally you don't have to include it in
main.ts
.But not all components will end up in you final application bundle, only the components that you import will.
To use SASS you need to first install it
And then you can just rename files to for example
styles.module.sass
and everything should compile fine.If you need a global stylesheet you can create a
lib/global.sass
and import it inmain.ts
:Here is a branch that uses global sass for the Button and a global stylesheet: github.com/receter/my-component-li...
Does this answer your questions sufficiently?
Yes it does! I'll check out your fixes and if they will work with my changes.
I had noticed my index.d.ts becoming converted to index.d.js and being empty.
On the export question, our setup differs a bit from the standard react component folder structure....i.e how I'm doing it is basically..
So in main.ts I guess I have to do
Yes? I get an error if I don't specify as default because I don't have my components as index.tsx files.
Then we are using Bootstrap. They haven't updated their sass to support @use and @forward, they still use @import so I have to be careful when pulling it in due to increased file size and duplication. What I was doing was running the sass command on build so a css was compiling and added to dist so the end developer could pull it in if they chose (from a theme perspective). However I want to play around with your solution inside the main.ts
Per the above I have to be careful adding a sass import to the top of individual components because if an input is used multiple times per page, I fear the reference to the styles will be repeated....I am not sure if that is valid in react. But if that file has to reference our bootstrap sass for their utility methods (i.e. color or fontsize) I think it will try to pull in bootstrap again due to the import issue I mentioned.
I want to have a playground locally to test the package but I don't want my local testing to be a part of our commit, just the package library.
For exporting your components you should be able to:
But inside of toggleWhatever.tsx you need to have a named export like:
If you for some reason need to export the components as default you can also do it like this which is easier to read in my opinion:
Not 100% sure what you mean with the SASS, but if you import a button multiple times the styles will be included just once.
CSS duplication issues can also be handled downstream by your bundler.
If you use a global CSS library you should be fine by just adding an import in
main.tsx
In this case the CSS library will end up in your application as soon as one component of the library is used. You could also add an import for the library to every component that needs the library, so the CSS library is only bundled if one of these components is imported.how to write styles using tailwind
it would be nice if you include that to
I think you can just use tailwind classes an make sure tailwind is set up in the consuming application and your test environment.
thanks for excellent article and sample code. The import CSS does not get transpiled to JS script. Thus I get run time error (when I use the library in another project).
For eg. Button/index.js has the following:
import "../../assets/index4.css";
Obvisiouly, this will not work in the brower. Should'nt this get transpiled as CSS Module ?
If the consuming environment does not have a bundler setup that supports CSS imports please see this answer: dev.to/receter/comment/2a198
You can disable these CSS imports and generate a CSS file that you can import sepparately.
thank you. Got it!
Hi Vesa,
this is very interesting, thank you! I did not yet try to use this approach within a Next.js project.
You can also remove the inject-css plugin (and the
sideEffects
from thepackage.json
)Having done that you should be able to just import the generated css file (
dist/assets/style.css
) inside your Next.js project. But of course you will not have the css treeshaking advantages with this approach.I published a branch with this approach here: github.com/receter/my-component-li...
Generally there are answers for the quetions raised in the linked issue:
As Global CSS.
The order of the individual files is determined by the order they are imported inside the libraries main file.
And the order in the consuming application should not matter.Maybe it would be possible to write a Next.js plugin enabling this.
What do you think?
Yes you are absolutely right about overrides. If you assign classes to the exported components it makes a difference if these classes come before or after the classes provided by the component library.
In this case the component library styles have to be imported before to have a lower specificity. And this is only guaranteed if the library is imported before any other styles.
As you correctly mention, the consuming application is responsible for ensuring the correct order of css.
You should be able to ensure this if:
Do you have more info like a github issue on this?
Can you ellaborate on this?
Thanks for the link!
The reason I am working on this topic and wrote the article is that I am trying to find the best solution to build a component library. I don't like CSS in JS that much and I am convinced that a stylesheet based approach is the way I want to go. I will think about the style ordering and might publish another article on this soon.
I wrote you on LinkedIn, if you are interested in having a discussion about this topic I would be more then happy to speak/write to you.
The advantage of handling the style imports inside the library is (obviously) that you don't need to manually import styles. This is not a big issue if it is just one stylesheet for a library. But if you only want to import the styles for components you actually use I see no other really satisfying solution.
I do have some rough ideas though…
I have the feeling that a fundamental problem is that the order of CSS is defined by the order it is imported in javascript. Which is kind of by chance because sometimes a component is imported earlier and sometimes later.
There are also not so easy to fix problems with dynamic importing github.com/vitejs/vite/issues/3924
I created a branch with a very simple example that demonstrates the order issue if anyone is interested in an example: github.com/receter/my-component-li...
What I did not expect: When importing ANY component from the library, all other imported CSS, even for components imported later on, will be at the same position.
@merri If you are interested I have written an article on CSS order of appearance. And in the meantime I have started to use CSS Layers to prevent these issues.
I would need more detailed information to give you an helpful answer. Do you have a repo were this happens? Does it also happen when you install my demo npm library? (link at the bottom of the article) What bundler setup are you using?