A multi-agent AI system that performs code reviews in parallel using zero-copy database forks and hybrid search. Built on Tiger Cloudโs Agentic Postgres, this project leverages Google Gemini 2.0 Flash to deliver faster, smarter, and isolated reviews โ redefining how AI-assisted code analysis works.
- Cover image
- Demo section
- Project structure
- Code sample section
๐ AI Code Review Swarm โ Parallel AI Agents on Tiger Cloud
What I Built
AI Code Review Swarm is an advanced, multi-agent system where three specialized AI reviewersโSecurity, Performance, and Qualityโanalyze code simultaneously.
Each agent operates inside its own database fork (using Tiger Cloudโs zero-copy technology), ensuring isolation and blazing-fast performance. The result? 3ร faster code reviews with deeper, safer insights.
๐ Category Submission
Agentic Postgres Challenge
๐ Links
GitHub: https://github.com/surajranaofficial/ai-code-review-swarm
Demo: Works locally (setup instructions below)
๐ก Summary
Traditional code review tools run sequentially, detect limited issue types, and lack context memory.
AI Code Review Swarm fixes that by combining:
Parallel AI agent workflows
Zero-copy database forks
Hybrid BM25 + Vector search
Continuous pattern learning
Together, these unlock safer, faster, and smarter reviews.
โ๏ธ Core Features
โ
Parallel, domain-specific AI agents (Security, Performance, Quality)
โ
Zero-copy forks for isolated, safe analysis
โ
Hybrid search: BM25 + Vector similarity
โ
Pattern memory for smarter future reviews
โ
3ร faster than sequential analysis
๐๏ธ Architecture Overview
User submits code
โ
โโโโโโโโโโโโโโโโโโโโโโโโโ
โ Main Tiger Cloud DB โ
โโโโโโโโโโโโฌโโโโโโโโโโโโโ
โ
โโโโโโโโโดโโโโโโโโโ
โ Fork DBs โ (Zero-copy, <5s)
โโโโโโโโโฌโโโโโโโโโ
โ
โโโโโโโโโดโโโโโโโโโโโโโโโ
โ โ
โโโโผโโโโโ โโโโโโผโโโโโ โโโโโโผโโโโโ
โSecurityโ โPerformanceโ โQuality โ
โ Agent โ โ Agent โ โ Agent โ
โ ๐ โ โ โก โ โ โจ โ
โโโโฌโโโโโโ โโโโโโฌโโโโโโโ โโโโโโฌโโโโ
โ โ โ
โโโโโโโโโฌโโโโโดโโโโโโโโโโโโโโ
โผ
Comprehensive Review Report
๐ง Why Itโs Special
Smart Isolation: Each AI runs in its own forked DBโsafe, fast, and reversible.
Intelligent Search: Combines BM25 text search + vector similarity for unmatched detection accuracy.
Self-Learning: Agents store previous fixes for context-aware recommendations.
Tiger Cloud Integration: Fully powered by Agentic Postgres + Fluid Storage.
๐งฉ Tech Stack
Language: Python 3.14
Framework: FastAPI
AI Model: Google Gemini 2.0 Flash
Database: Tiger Cloud (Agentic Postgres)
โก Performance Summary
Metric Traditional AI Swarm Gain
Review Time 60+ sec 22 sec 3ร faster
Issues Found 5โ8 15+ 2ร more
Critical Bugs 1โ2 3โ4 2ร more
Agent Isolation โ โ
Safe
Learning Memory โ โ
Smarter
๐ฎ Future Plans
Add more agents (Accessibility, Auto-Fix, Doc Generator)
VS Code extension for real-time hints
Auto-pull-request creation with AI-generated fixes
๐ Conclusion
AI Code Review Swarm proves that Agentic Postgres is more than a databaseโitโs a platform for intelligent, multi-agent collaboration.
Zero-copy forks, hybrid search, and parallelism redefine whatโs possible in code intelligence.
Built with โค๏ธ for the Agentic Postgres Challenge




Top comments (0)