DEV Community

Suraj Rana
Suraj Rana

Posted on

Building an AI Code Review Swarm with Gemini & Tiger Cloud Postgres

A multi-agent AI system that performs code reviews in parallel using zero-copy database forks and hybrid search. Built on Tiger Cloudโ€™s Agentic Postgres, this project leverages Google Gemini 2.0 Flash to deliver faster, smarter, and isolated reviews โ€” redefining how AI-assisted code analysis works.

 - Cover image 
Enter fullscreen mode Exit fullscreen mode

 - Demo section
Enter fullscreen mode Exit fullscreen mode

 - Project structure
Enter fullscreen mode Exit fullscreen mode

 - Code sample section
Enter fullscreen mode Exit fullscreen mode

๐Ÿš€ AI Code Review Swarm โ€” Parallel AI Agents on Tiger Cloud
What I Built

AI Code Review Swarm is an advanced, multi-agent system where three specialized AI reviewersโ€”Security, Performance, and Qualityโ€”analyze code simultaneously.
Each agent operates inside its own database fork (using Tiger Cloudโ€™s zero-copy technology), ensuring isolation and blazing-fast performance. The result? 3ร— faster code reviews with deeper, safer insights.

๐Ÿ† Category Submission

Agentic Postgres Challenge

๐Ÿ”— Links

GitHub: https://github.com/surajranaofficial/ai-code-review-swarm

Demo: Works locally (setup instructions below)

๐Ÿ’ก Summary

Traditional code review tools run sequentially, detect limited issue types, and lack context memory.
AI Code Review Swarm fixes that by combining:

Parallel AI agent workflows

Zero-copy database forks

Hybrid BM25 + Vector search

Continuous pattern learning

Together, these unlock safer, faster, and smarter reviews.

โš™๏ธ Core Features

โœ… Parallel, domain-specific AI agents (Security, Performance, Quality)
โœ… Zero-copy forks for isolated, safe analysis
โœ… Hybrid search: BM25 + Vector similarity
โœ… Pattern memory for smarter future reviews
โœ… 3ร— faster than sequential analysis

๐Ÿ—๏ธ Architecture Overview
User submits code
โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Main Tiger Cloud DB โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Fork DBs โ”‚ (Zero-copy, <5s)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ โ”‚
โ”Œโ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”
โ”‚Securityโ”‚ โ”‚Performanceโ”‚ โ”‚Quality โ”‚
โ”‚ Agent โ”‚ โ”‚ Agent โ”‚ โ”‚ Agent โ”‚
โ”‚ ๐Ÿ”’ โ”‚ โ”‚ โšก โ”‚ โ”‚ โœจ โ”‚
โ””โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”˜
โ”‚ โ”‚ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ–ผ
Comprehensive Review Report

๐Ÿง  Why Itโ€™s Special

Smart Isolation: Each AI runs in its own forked DBโ€”safe, fast, and reversible.

Intelligent Search: Combines BM25 text search + vector similarity for unmatched detection accuracy.

Self-Learning: Agents store previous fixes for context-aware recommendations.

Tiger Cloud Integration: Fully powered by Agentic Postgres + Fluid Storage.

๐Ÿงฉ Tech Stack

Language: Python 3.14

Framework: FastAPI

AI Model: Google Gemini 2.0 Flash

Database: Tiger Cloud (Agentic Postgres)

โšก Performance Summary
Metric Traditional AI Swarm Gain
Review Time 60+ sec 22 sec 3ร— faster
Issues Found 5โ€“8 15+ 2ร— more
Critical Bugs 1โ€“2 3โ€“4 2ร— more
Agent Isolation โŒ โœ… Safe
Learning Memory โŒ โœ… Smarter
๐Ÿ”ฎ Future Plans

Add more agents (Accessibility, Auto-Fix, Doc Generator)

VS Code extension for real-time hints

Auto-pull-request creation with AI-generated fixes

๐Ÿ Conclusion

AI Code Review Swarm proves that Agentic Postgres is more than a databaseโ€”itโ€™s a platform for intelligent, multi-agent collaboration.
Zero-copy forks, hybrid search, and parallelism redefine whatโ€™s possible in code intelligence.

Built with โค๏ธ for the Agentic Postgres Challenge

Top comments (0)