๐ง Build an AI Stock Forecasting API with LangGraph, OpenAI, and FastAPI
Want to predict stock prices using modern AI tools? In this guide, weโll build a production-grade API using LangGraph, OpenAI, and FastAPI โ powered by AI agents that:
โ
Analyze financial news
โ
Analyze stock charts & trends
โ
Predict price forecasts with confidence levels & sentiment
โ
Suggest short- and long-term selling targets
โ
Return elegant HTML for direct frontend display
๐งฑ Project Architecture
Layer Tech Stack
๐ง AI Reasoning LangGraph + OpenAI GPT-4
๐ Stock Data Yahoo Finance via yfinance
๐ฐ News Custom scraper or NewsAPI
๐ Backend FastAPI
โก Caching Redis / FAISS
๐งฉ Agents Modular, parallel AI agents
๐ง AI Agent Design
We created three modular AI agents:
NewsAgent: Fetches and summarizes the latest news for a stock.
TrendAgent: Analyzes historical prices and technical patterns.
PredictionAgent: Uses output from News & Trend agents + stock history to predict:
Stock prices for 7d, 15d, 1mo, and 3mo
Short- and long-term sell targets
๐ Bullish, ๐ Bearish, ๐ค Neutral sentiment
๐ Confidence level: High / Medium / Low
๐งญ Process Flow Diagram
Here's how the LangGraph flow looks:
Start([๐ Start API Call]) --> NewsAgent[๐๏ธ News Agent]
Start --> TrendAgent[๐ Trend Agent]
NewsAgent --> Combine[๐ Merge Outputs]
TrendAgent --> Combine
Combine --> PredictionAgent[๐ฎ Prediction Agent]
PredictionAgent --> Return([๐ค Return HTML Result])
NewsAgent and TrendAgent run in parallel
PredictionAgent uses their output to forecast intelligently
๐ฎ Prediction Agent Sample Logic
def predict_future(stock, news, trend):
history_summary = get_history_summary(stock)
prompt = (
f"Stock: {stock}\n\n"
f"News: {news['summary']}\n"
f"Trend: {trend['analysis']}\n"
f"History: {history_summary}\n\n"
f"Predict future stock price ranges:\n"
f" - 7d, 15d, 1mo, 3mo\n"
f"Suggest:\n"
f" - Short-term and long-term sell targets\n"
f"Provide sentiment (Bullish/Neutral/Bearish) and confidence level\n\n"
f"Output as styled HTML with headers and bullet points."
)
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
max_tokens=800
)
return {"html_prediction": response.choices[0].message.content}
๐งช Example HTML Output
๐ 15-Day Price Forecast
- 7 Days: โน3,420 โ โน3,480
- 15 Days: โน3,500 โ โน3,570
๐ฏ Sell Targets
- Short-term: โน3,550
- Long-term: โน3,700+
๐ Sentiment
๐ Bullish โ Positive momentum and rising volumes.
๐ Confidence
High โ Aligned news and technical signals, with historical support.
โก Frontend Integration
Return the prediction as HTMLResponse from your FastAPI backend:
from fastapi.responses import HTMLResponse
@app.post("/predict", response_class=HTMLResponse)
async def predict_stock(...):
result = await flow.invoke(input)
return result["html_prediction"]
Inject in React or Vue:
๐พ Caching for Performance
Use Redis or FAISS to cache:
Past news summaries
Processed trend data
Full prediction HTML for frequently requested stocks
import redis
redis_client = redis.Redis(host="localhost", port=6379)
redis_client.set(stock_symbol, prediction_html, ex=3600)
๐ Deployment Tips
Use uvicorn or gunicorn to serve FastAPI
Host on Render, Fly.io, or your own VPS
Secure .env for API keys
Use openai>=1.0.0 (new SDK format)
๐ฏ Final Thoughts
With LangGraph + FastAPI + OpenAI, you've created a fully modular, explainable stock forecasting API that:
Thinks like an AI co-analyst ๐ง
Responds in seconds ๐
Presents beautiful HTML results ๐
Gives confidence-driven decisions for buyers & investors
For collab DM me on LinkedIn
Let me know your thoughts or suggestions on this idea in the comments below! ๐
Top comments (0)