1. Python Lists – The Ordered All-Rounder
A list is a mutable, ordered collection that can store items of different types.
✅ Key Features:
- Ordered
- Mutable (can change)
- Allows duplicates
💡 Syntax & Example:
fruits = ['apple', 'banana', 'cherry']
fruits.append('mango')
print(fruits) # ['apple', 'banana', 'cherry', 'mango']
🔧 Common List Operations:
fruits[0] # Access first item → 'apple'
fruits[-1] # Last item → 'mango'
len(fruits) # 4
'banana' in fruits # True
fruits.remove('apple')
🔒 2. Python Tuples – The Immutable Sibling
A tuple is like a list, but immutable (cannot be changed after creation).
✅ Key Features:
- Ordered
- Immutable
- Allows duplicates
💡 Syntax & Example:
person = ('Alice', 30, 'Engineer')
print(person[1]) # 30
⚠️ Single-Element Tuples:
t = ('hello',) # With comma — valid tuple
not_a_tuple = ('hello') # Just a string!
When to use:
- Fixed data structures (e.g., coordinates, DB rows)
- As keys in dictionaries (if they contain only immutable types)
🧹 3. Python Sets – The Unique Collection
A set is an unordered, mutable collection of unique items.
✅ Key Features:
- Unordered
- No duplicates
- Fast membership tests
💡 Syntax & Example:
colors = {'red', 'green', 'blue'}
colors.add('yellow')
colors.add('red') # Ignored, already exists
print(colors) # {'green', 'blue', 'red', 'yellow'}
🔧 Common Set Operations:
colors.remove('blue')
'aqua' in colors # False
colors.union({'black'}) # New set with combined items
⚠️ Empty set:
s = set() # ✅ This is an empty set
s2 = {} # ⚠️ This is an empty dictionary!
🧠 4. Python Dictionaries – The Key-Value Store
A dictionary (or dict) stores data as key-value pairs.
✅ Key Features:
- Unordered (in < Python 3.7)
- Keys must be unique and immutable
- Values can be of any type
💡 Syntax & Example:
user = {
'name': 'John',
'age': 25,
'email': 'john@example.com'
}
print(user['name']) # John
🔧 Common Dictionary Operations:
user['age'] = 26 # Update
user.get('city', 'N/A') # Safe lookup → 'N/A'
del user['email'] # Remove key
'user' in user # False
Nested Dict Example:
employee = {
'id': 101,
'profile': {'name': 'Jane', 'role': 'Manager'}
}
print(employee['profile']['name']) # Jane
✨ Final Thoughts
Understanding these core Python data structures is essential for effective programming. Choose the right one based on your needs:
- Use lists for general-purpose ordered data
- Use tuples for fixed-size, immutable groups
- Use sets for fast membership checks and unique values
- Use dictionaries when you need to map keys to values
🗨️ What’s Next?
Want to go deeper? In future posts, I’ll cover:
- Custom sorting of lists/dicts
- Advanced set operations
- Dictionary comprehensions
- Real-world use cases in APIs and data processing
Follow me for more Python tips and tricks! 🐍✨
Top comments (0)