DEV Community

Cover image for Elastic D&D - Update 14 - Note Input Rewrite
Joe
Joe

Posted on • Edited on

Elastic D&D - Update 14 - Note Input Rewrite

In the last post we talked about how text chunking. If you missed it, you can check that out here!

Note Input Rewrite

The inspiration behind this rewrite actually comes from my girlfriend, who mentioned having some sort of glossary/index added to the application. I thought that was a great idea, but the data structure needed to be tweaked for that. In the process of tweaking the structure, I had an overwhelming urge to clean up my code, so here we are!

Logically, I see the code in two major sections -- a data collection section, and a processing/indexing section.

Full code:

# Elastic D&D
# Author: thtmexicnkid
# Last Updated: 12/09/2023
# 
# Streamlit - Note Input Page - Allows the user to store audio or text notes in Elasticsearch.

import streamlit as st
from functions import *
from variables import *

# set streamlit app to use centered format
st.set_page_config(layout="centered")

# initializes session state, loads login authentication configuration
initialize_session_state(["username"])
config, authenticator = load_yml()

# makes user log on to view page
if not st.session_state.username:
    error_message("UNAUTHORIZED: Please login on the Home page.",False)
else:
    with st.sidebar:
        # adds elastic d&d logo to sidebar
        display_image(streamlit_data_path + "banner.png","auto")
        st.divider()
        # add character picture to sidebar, if available
        try:
            display_image(streamlit_data_path + st.session_state.username + ".png","auto")
        except:
            print("Picture unavailable for home page sidebar.")
    st.header('Note Input',divider=True)
    # gather information for log_payload in form
    form_variable_list = ["log_id","log_type","log_session","log_index","file","location_name","location_description","overview_summary","person_name","person_description","quest_name","quest_description","quest_finished","submitted","transcribed_text","content","content_vector"]
    st.session_state["log_type"] = st.selectbox("What kind of note is this?", ["audio","location","miscellaneous","overview","person","quest"])
    if st.session_state.log_type == "quest":
        st.session_state["quest_type"] = st.selectbox("Is this quest new or existing?", ["New","Existing"])
    with st.form(st.session_state.log_type, clear_on_submit=True):
        st.session_state["log_session"] = st.slider("Which session is this?", 0, 250)
        st.session_state["log_id"] = "session" + str(st.session_state.log_session) + "-" + generate_unique_id()
        ###CHECK IF LOG_ID EXISTS, RE-GENERATE IF IT DOES###
        if st.session_state.log_type == "audio":
            st.session_state["log_index"] = "dnd-notes-transcribed"
            if assemblyai_api_key:
                st.session_state["file"] = st.file_uploader("Choose audio file",type=[".3ga",".8svx",".aac",".ac3",".aif",".aiff",".alac",".amr",".ape",".au",".dss",".flac",".flv",".m2ts",".m4a",".m4b",".m4p",".m4p",".m4r",".m4v",".mogg",".mov",".mp2",".mp3",".mp4",".mpga",".mts",".mxf",".oga",".ogg",".opus",".qcp",".ts",".tta",".voc",".wav",".webm",".wma",".wv"])
            else:
                st.session_state["file"] = st.file_uploader("Choose audio file",type=[".wav"])
            if st.session_state.file is not None:
                st.session_state["ready_for_submission"] = True
            else:
                st.warning('Please upload a file and submit')
        else:
            st.session_state["log_index"] = "dnd-notes-" + st.session_state.username
            if st.session_state.log_type == "location":
                st.session_state["location_name"] = text_cleanup(st.text_input("Input location name:"))
                st.session_state["location_description"] = text_cleanup(st.text_area("Input location description:"))
                if st.session_state.location_name is not None and st.session_state.location_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the location name, description, and submit')
            elif st.session_state.log_type == "miscellaneous":
                st.session_state["miscellaneous_note"] = text_cleanup(st.text_area("Input miscellaneous note:"))
                if st.session_state.miscellaneous_note is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter miscellaneous note and submit')
            elif st.session_state.log_type == "overview":
                st.session_state["overview_summary"] = text_cleanup(st.text_area("Input session summary:"))
                if st.session_state.overview_summary is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the session overview/summary and submit')
            elif st.session_state.log_type == "person":
                st.session_state["person_name"] = text_cleanup(st.text_input("Input person name:"))
                st.session_state["person_description"] = text_cleanup(st.text_area("Input person description:"))
                if st.session_state.person_name is not None and st.session_state.person_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the person name, description, and submit')
            elif st.session_state.log_type == "quest":
                if st.session_state.quest_type == "Existing":
                    st.session_state["quest_name"] = st.selectbox("Select quest to update", elastic_get_quests())
                else:
                    st.session_state["quest_name"] = st.text_input("Input quest name:")
                st.session_state["quest_description"] = text_cleanup(st.text_area("Input quest description / update:"))
                st.session_state["quest_finished"] = st.checkbox("Is the quest finished?")
                if st.session_state.quest_name is not None and st.session_state.quest_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the quest name, description, mark the status, and submit')
        # submit form, process data, and index log_payload
        st.session_state["submitted"] = st.form_submit_button("Submit")
        if st.session_state.submitted == True and st.session_state.ready_for_submission == True:
            # audio to text transcription
            if st.session_state.log_type == "audio":
                if assemblyai_api_key:
                    st.session_state["transcribed_text"] = text_cleanup(transcribe_audio_paid(st.session_state.file))
                else:
                    st.session_state["transcribed_text"] = text_cleanup(transcribe_audio_free(st.session_state.file))
                if st.session_state.transcribed_text not in (None,""):
                    chunk_array = split_text_with_overlap(st.session_state.transcribed_text)
                    for chunk in chunk_array:
                        st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                        st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                        if st.session_state.content_vector == None:
                            error_message("AI API vectorization failure",2)
                        else:
                            st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.transcribed_text,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                            elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # location logs
            elif st.session_state.log_type == "location":
                chunk_array = split_text_with_overlap(st.session_state.location_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The location is " + st.session_state.location_name + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.location_name + ". " + st.session_state.location_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"location":{"name":st.session_state.location_name,"description":st.session_state.location_description}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # miscellaneous logs
            elif st.session_state.log_type == "miscellaneous":
                chunk_array = split_text_with_overlap(st.session_state.miscellaneous_note)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.miscellaneous_note,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # overview logs
            elif st.session_state.log_type == "overview":
                chunk_array = split_text_with_overlap(st.session_state.overview_summary)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.overview_summary,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # person logs
            elif st.session_state.log_type == "person":
                chunk_array = split_text_with_overlap(st.session_state.person_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The person's name is " + st.session_state.person_name + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.person_name + ". " + st.session_state.person_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"person":{"name":st.session_state.person_name,"description":st.session_state.person_description}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # quest logs
            elif st.session_state.log_type == "quest":
                if st.session_state.quest_finished == True:
                    elastic_update_quest_status(st.session_state.quest_name)
                    status = "The quest has been completed."
                else:
                    status = "The quest has not been completed yet."
                chunk_array = split_text_with_overlap(st.session_state.quest_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The quest is " + st.session_state.quest_name + ". " + status + " " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.quest_name + ". " + st.session_state.quest_description + status,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"quest":{"name":st.session_state.quest_name,"description":st.session_state.quest_description,"finished":st.session_state.quest_finished}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
    clear_session_state(form_variable_list)
Enter fullscreen mode Exit fullscreen mode

Data Collection

The first half of the code mainly deals with data input and sorting that data into variables that the second half of the code will use for manipulation and/or payloads.

These payloads are important, as they provide the new data structure mentioned above.

The data collection code consists of lines 32-89:

    # gather information for log_payload in form
    form_variable_list = ["log_id","log_type","log_session","log_index","file","location_name","location_description","overview_summary","person_name","person_description","quest_name","quest_description","quest_finished","submitted","transcribed_text","content","content_vector"]
    st.session_state["log_type"] = st.selectbox("What kind of note is this?", ["audio","location","miscellaneous","overview","person","quest"])
    if st.session_state.log_type == "quest":
        st.session_state["quest_type"] = st.selectbox("Is this quest new or existing?", ["New","Existing"])
    with st.form(st.session_state.log_type, clear_on_submit=True):
        st.session_state["log_session"] = st.slider("Which session is this?", 0, 250)
        st.session_state["log_id"] = "session" + str(st.session_state.log_session) + "-" + generate_unique_id()
        ###CHECK IF LOG_ID EXISTS, RE-GENERATE IF IT DOES###
        if st.session_state.log_type == "audio":
            st.session_state["log_index"] = "dnd-notes-transcribed"
            if assemblyai_api_key:
                st.session_state["file"] = st.file_uploader("Choose audio file",type=[".3ga",".8svx",".aac",".ac3",".aif",".aiff",".alac",".amr",".ape",".au",".dss",".flac",".flv",".m2ts",".m4a",".m4b",".m4p",".m4p",".m4r",".m4v",".mogg",".mov",".mp2",".mp3",".mp4",".mpga",".mts",".mxf",".oga",".ogg",".opus",".qcp",".ts",".tta",".voc",".wav",".webm",".wma",".wv"])
            else:
                st.session_state["file"] = st.file_uploader("Choose audio file",type=[".wav"])
            if st.session_state.file is not None:
                st.session_state["ready_for_submission"] = True
            else:
                st.warning('Please upload a file and submit')
        else:
            st.session_state["log_index"] = "dnd-notes-" + st.session_state.username
            if st.session_state.log_type == "location":
                st.session_state["location_name"] = text_cleanup(st.text_input("Input location name:"))
                st.session_state["location_description"] = text_cleanup(st.text_area("Input location description:"))
                if st.session_state.location_name is not None and st.session_state.location_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the location name, description, and submit')
            elif st.session_state.log_type == "miscellaneous":
                st.session_state["miscellaneous_note"] = text_cleanup(st.text_area("Input miscellaneous note:"))
                if st.session_state.miscellaneous_note is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter miscellaneous note and submit')
            elif st.session_state.log_type == "overview":
                st.session_state["overview_summary"] = text_cleanup(st.text_area("Input session summary:"))
                if st.session_state.overview_summary is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the session overview/summary and submit')
            elif st.session_state.log_type == "person":
                st.session_state["person_name"] = text_cleanup(st.text_input("Input person name:"))
                st.session_state["person_description"] = text_cleanup(st.text_area("Input person description:"))
                if st.session_state.person_name is not None and st.session_state.person_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the person name, description, and submit')
            elif st.session_state.log_type == "quest":
                if st.session_state.quest_type == "Existing":
                    st.session_state["quest_name"] = st.selectbox("Select quest to update", elastic_get_quests())
                else:
                    st.session_state["quest_name"] = st.text_input("Input quest name:")
                st.session_state["quest_description"] = text_cleanup(st.text_area("Input quest description / update:"))
                st.session_state["quest_finished"] = st.checkbox("Is the quest finished?")
                if st.session_state.quest_name is not None and st.session_state.quest_description is not None:
                    st.session_state["ready_for_submission"] = True
                else:
                    st.warning('Please enter the quest name, description, mark the status, and submit')
Enter fullscreen mode Exit fullscreen mode

Processing / Indexing

The second half of the code manipulates data inside of the variables set in the first half of code, builds payloads, and sends those off for indexing into Elastic.

The processing / indexing code consists of lines 90-168:

# submit form, process data, and index log_payload
        st.session_state["submitted"] = st.form_submit_button("Submit")
        if st.session_state.submitted == True and st.session_state.ready_for_submission == True:
            # audio to text transcription
            if st.session_state.log_type == "audio":
                if assemblyai_api_key:
                    st.session_state["transcribed_text"] = text_cleanup(transcribe_audio_paid(st.session_state.file))
                else:
                    st.session_state["transcribed_text"] = text_cleanup(transcribe_audio_free(st.session_state.file))
                if st.session_state.transcribed_text not in (None,""):
                    chunk_array = split_text_with_overlap(st.session_state.transcribed_text)
                    for chunk in chunk_array:
                        st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                        st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                        if st.session_state.content_vector == None:
                            error_message("AI API vectorization failure",2)
                        else:
                            st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.transcribed_text,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                            elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # location logs
            elif st.session_state.log_type == "location":
                chunk_array = split_text_with_overlap(st.session_state.location_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The location is " + st.session_state.location_name + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.location_name + ". " + st.session_state.location_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"location":{"name":st.session_state.location_name,"description":st.session_state.location_description}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # miscellaneous logs
            elif st.session_state.log_type == "miscellaneous":
                chunk_array = split_text_with_overlap(st.session_state.miscellaneous_note)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.miscellaneous_note,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # overview logs
            elif st.session_state.log_type == "overview":
                chunk_array = split_text_with_overlap(st.session_state.overview_summary)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.overview_summary,"content":st.session_state.content,"content_vector":st.session_state.content_vector})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # person logs
            elif st.session_state.log_type == "person":
                chunk_array = split_text_with_overlap(st.session_state.person_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The person's name is " + st.session_state.person_name + ". " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.person_name + ". " + st.session_state.person_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"person":{"name":st.session_state.person_name,"description":st.session_state.person_description}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
            # quest logs
            elif st.session_state.log_type == "quest":
                if st.session_state.quest_finished == True:
                    elastic_update_quest_status(st.session_state.quest_name)
                    status = "The quest has been completed."
                else:
                    status = "The quest has not been completed yet."
                chunk_array = split_text_with_overlap(st.session_state.quest_description)
                for chunk in chunk_array:
                    st.session_state["content"] = "This note is from session " + str(st.session_state.log_session) + ". The quest is " + st.session_state.quest_name + ". " + status + " " + chunk
                    st.session_state["content_vector"] = api_get_vector_object(st.session_state.content)
                    if st.session_state.content_vector == None:
                        error_message("AI API vectorization failure",2)
                    else:
                        st.session_state["log_payload"] = json.dumps({"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.quest_name + ". " + st.session_state.quest_description + status,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"quest":{"name":st.session_state.quest_name,"description":st.session_state.quest_description,"finished":st.session_state.quest_finished}})
                        elastic_index_document(st.session_state.log_index,st.session_state.log_payload,True)
Enter fullscreen mode Exit fullscreen mode

Data Structure

Audio Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.transcribed_text,"content":st.session_state.content,"content_vector":st.session_state.content_vector}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: the entire block of transcribed text
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results

Location Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.location_name + ". " + st.session_state.location_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"location":{"name":st.session_state.location_name,"description":st.session_state.location_description}}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: a combination of location name and description
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results
location.name: the name of the location, to be used in the glossary/index
location.description: the description of the location, to be used in the glossary/index

Miscellaneous Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.miscellaneous_note,"content":st.session_state.content,"content_vector":st.session_state.content_vector}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: the entire block of note text
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results

Overview Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.overview_summary,"content":st.session_state.content,"content_vector":st.session_state.content_vector}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: the entire block of overview text
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results

Person Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.person_name + ". " + st.session_state.person_description,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"person":{"name":st.session_state.person_name,"description":st.session_state.person_description}}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: a combination of person name and description
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results
person.name: the name of the NPC, to be used in the glossary/index
person.description: the description of the NPC, to be used in the glossary/index

Quest Logs
{"id":st.session_state.log_id,"type":st.session_state.log_type,"session":st.session_state.log_session,"message":st.session_state.quest_name + ". " + st.session_state.quest_description + status,"content":st.session_state.content,"content_vector":st.session_state.content_vector,"quest":{"name":st.session_state.quest_name,"description":st.session_state.quest_description,"finished":st.session_state.quest_finished}}
Enter fullscreen mode Exit fullscreen mode

id: a unique identifier for a log or group of logs if split by text chunking function
type: what kind of log it is (audio, location, etc.)
session: the session number
message: a combination of quest name, description, and status
content: a combination of all relevant information (session number, etc.) and the chunk of text provided by the text chunking function
content_vector: the vector object of the content field, used by Veverbot for returning relevant results
quest.name: the name of the quest, to be used in the glossary/index
quest.description: the description/update of the quest, to be used in the glossary/index
quest.finished: the status of the quest, to be used in the glossary/index

Closing Remarks

Overall, the rewrite went smoothly! I feel that I can do much more with the new structure and it will be easier to add fields in the future under the location, person, and quest objects.

Next week, I may begin talking about the new player dashboard that will be replacing the home page. However, it has come to my attention that the password reset functionality is broken, so I may be fixing that instead.

Check out the GitHub repo below. You can also find my Twitch account in the socials link, where I will be actively working on this during the week while interacting with whoever is hanging out!

GitHub Repo
Socials

Happy Coding,
Joe

Top comments (0)