🚀 Turkish Sieve Engine (TSE) V.1.0.0
Unique, Compact & Massive-Parallel Prime Discovery Engine
📌 Introduction
Turkish Sieve Engine (TSE) is a revolutionary application that combines unprecedented computational efficiency, compact memory structures, and massive parallelization in prime number research. Based on the scientific methodology published on Zenodo (DOI: 10.5281/zenodo.18038661), TSE is the most efficient academic tool designed for the detection of primes, twin primes, and cousin primes within any given range, including massive scales ($10^{14}$ and beyond).
📊 Key Metrics & Achievements
- Peak Throughput: 339.4 Billion candidates/sec (measured on RTX 3070 @ $10^{12}$ range).
- Memory Efficiency: N/6 bit data structure (6x more compact than classical sieves).
- GPU Acceleration: Up to 11.0× speedup compared to multi-core CPUs in optimal ranges.
- Scientific Accuracy: 100% compliance with OEIS A007508 (Zero error margin for twin primes).
- First Achievement: Successful full enumeration of cousin primes up to the $10^{14}$ limit.
💎 Why is TSE Unique?
1. No Modular Arithmetic
Unlike traditional sieving algorithms, TSE replaces expensive MOD/DIV operations with simple integer additions ($n \leftarrow n+p$). This hardware-friendly approach eliminates the heavy computational overhead of division in GPU/HPC architectures.
2. Extreme Memory Efficiency
The canonical $N/3$ bit sieve structure has been reduced to an $N/6$ bit representation by leveraging the mathematical nature of $(p, p+2)$ and $(p, p+4)$ pairs. This allows processing 100 trillion numbers ($10^{14}$) using only 1.1 GB of VRAM.
3. Seamless Compactness & UI/UX
- No Coding Knowledge Required: A fully menu-driven, interactive interface for researchers.
- Smart Hardware Detection: Automatically analyzes system CPU and GPU specifications (Cores, Cache, VRAM).
- Professional Reporting: Generates detailed performance metrics after every analysis.
📝 Sample Performance Analysis Report
TSE generates detailed reports showing the architectural efficiency of the system:
*************************** NEW REPORT ***********************
==============================================================
PERFORMANCE ANALYSIS & REPORT
2026-01-17 15:11:49
==============================================================
Engine Type : GPU Segmented Sieve (Cuda Parallel.)
Device : NVIDIA GeForce RTX 3070
Range Start : 1
Range End : 1,000,000,000,000
Type : TWIN PRIME
Total Process Time : 5 s 510 ms
TOTAL PAIRS FOUND : 1,870,585,220
--------------------------------------------------------------
Throughput : 181.488 G-items/s
CUDA Occupancy : %83.3 (Architectural Efficiency)
Speed (Decimal) : 181488.203 Million/s
Speed (Binary) : 173080.638 Mi/s
System RAM Usage : 281 MB
GPU VRAM Usage : 1127 MB
--------------------------------------------------------------
>> 181,488,203,266 numbers checked per second
===============================================================
This report is the result of the TSE V.1.0.0 application.
************************** END OF REPORT **********************
*************************** NEW REPORT ***********************
==============================================================
PERFORMANCE ANALYSIS & REPORT
2026-01-17 15:54:30
==============================================================
Engine Type : GPU Segmented Sieve (Cuda Parallel.)
Device : NVIDIA GeForce RTX 3070
Range Start : 1
Range End : 100,000,000,000,000
Type : TWIN PRIME
Total Process Time : 2264 s 706 ms
TOTAL PAIRS FOUND : 135,780,321,665
--------------------------------------------------------------
Throughput : 44.156 G-items/s
CUDA Occupancy : %83.3 (Architectural Efficiency)
Speed (Decimal) : 44155.842 Million/s
Speed (Binary) : 42110.292 Mi/s
System RAM Usage : 314 MB
GPU VRAM Usage : 1145 MB
--------------------------------------------------------------
>> 44,155,841,862 numbers checked per second
===============================================================
This report is the result of the TSE V.1.0.0 application.
************************** END OF REPORT **********************
*************************** NEW REPORT ***********************
==============================================================
PERFORMANCE ANALYSIS & REPORT
2026-01-17 19:49:20
==============================================================
Engine Type : GPU Segmented Sieve (Cuda Parallel.)
Device : NVIDIA GeForce GTX 1650 Ti
Range Start : 1,000,000,000,000,000
Range End : 1,001,000,000,000,000
Type : TWIN PRIME
Total Process Time : 348 s 447 ms
TOTAL PAIRS FOUND : 1,106,775,692
--------------------------------------------------------------
Throughput : 2.870 G-items/s
CUDA Occupancy : %100.0 (Architectural Efficiency)
Speed (Decimal) : 2869.877 Million/s
Speed (Binary) : 2736.928 Mi/s
System RAM Usage : 279 MB
GPU VRAM Usage : 886 MB
--------------------------------------------------------------
>> 2,869,876,910 numbers checked per second
===============================================================
This report is the result of the TSE V.1.0.0 application.
************************** END OF REPORT **********************
*************************** NEW REPORT ***********************
==============================================================
PERFORMANCE ANALYSIS & REPORT
2026-01-17 05:05:49
==============================================================
Engine Type : CPU Multi-Core Segmented (OMP Parallel.)
Device : Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz
Range Start : 0
Range End : 100,000,000,000
Type : COUSIN PRIME
Total Process Time : 12 s 177 ms
TOTAL PAIRS FOUND : 224,373,161
--------------------------------------------------------------
Throughput : 8.212 G-items/s
Compute Strategy : High-Throughput Mode
Speed (Decimal) : 8212.203 Million/s
Speed (Binary) : 7831.767 Mi/s
System RAM Usage : 150 MB
GPU VRAM Usage : 0 MB
--------------------------------------------------------------
>> 8,212,203,334 numbers checked per second
===============================================================
This report is the result of the TSE V.1.0.0 application.
************************** END OF REPORT **********************
🚀 How to Use (Step-by-Step)
System Requirements
GPU: NVIDIA CUDA Compute Capability 3.5+ (RTX/GTX Series).
CPU: Intel/AMD x86-64 (with OpenMP support).
OS: Currently Windows 10/11 only.
Usage Steps
Run Tse_v100.exe.
The application will automatically detect your hardware (Cores, Cache, GPU, VRAM).
Select from the Main Menu:
[1] GPU MODE: Uses the CUDA engine for maximum performance.
[2] CPU MODE: Uses the multi-core statistical engine.
Enter Parameters: Start (N), End (M), and Prime Type (1: Twin, 2: Cousin).
Once the analysis is complete, press the Y key to save the results as TSE_Report_[Date].txt.
📊 Global Benchmarking & Contribution
We aim to build a comprehensive performance database across different hardware architectures. You can contribute to the development and scientific validation of the Turkish Sieve Engine:
-
Submit Your Benchmarks: If you run a test and select the "Save Results (Y)" option, the application will automatically generate an
analysis_log.rtf(performance metrics) and anengine_config.txt(hardware/system specs).- Please email these two files to bilgisoft.tr@gmail.com along with your name or nickname.
- We will publish verified results in our official Global Benchmark Table to showcase how TSE performs on various GPUs and CPUs worldwide.
Star the Project: If you are a researcher, academic, or enthusiast using this engine, please consider giving this repository a Star (⭐). Your support helps increase the project's visibility in the scientific community and encourages further development of the N/6 bit methodology.
📂 Repository Structure
src/ → Source code implementations (CUDA & OpenMP).
bin/ → Executable files (tse.exe).
docs/ → Academic paper (Zenodo PDF), figures, and documentation.
logs/ → Execution and performance logs.
🔮 Roadmapv1.1.0 (2026 H2):
Multi-GPU support (NVLink), GMP Integration (breaking the $2^{64}$ limit).
v2.0.0+: Distributed computing (MPI), AI-optimized sieving patterns, and FPGA support.
⚖️ Licensing & CitationAcademic Use:
Free of charge with full capacity but time-limited access for researchers and the scientific community.
Commercial Use:
Subject to a licensing agreement for enterprise integration and commercial use.
Details:
See the LICENSE.md file for more information.
⚖️ Citation
If you use the Turkish Sieve Engine or the N/6 Bit Methodology in your research, please cite the original work using the following format:
APA Style
ÇAKANLI, H. (2025). The Turkish Sieve Methodology: Deterministic Computation of Twin and Cousin Prime Pairs Using an N/6 Bit Data Structure (V.1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18038661
💡 Other Styles (BibTeX, RIS, MLA, etc.)
You can export this citation in various formats directly from the official Zenodo page:
👉 View and Export Citations on Zenodo
DOI: 10.5281/zenodo.18038661
Contact & Licensing: 📧 bilgisoft.tr@gmail.com
🔬 Academic Metadata & Publication Details
The methodology behind this engine is formally documented as a scientific preprint. Below are the official publication details:
- Document Title: The Turkish Sieve Methodology: Deterministic Computation of Twin and Cousin Prime Pairs Using an N/6 Bit Data Structure
-
Persistent Identifier (DOI): 10.5281/zenodo.18038661
- Resource Type: Preprint (Scientific Paper)
- Publisher: Zenodo
- Primary Language: English
- Release Date: 2025
Top comments (0)