DEV Community

Cover image for Diffk Solution - Interviewbit
Vikram Singh Gurjar
Vikram Singh Gurjar

Posted on

4 3

Diffk Solution - Interviewbit

Hi Devs, Happy Coding
I am planning to revise Data Structure and Algorithms Concepts so I will be sharing my approach as well as a full solution for problems I solve. This is my first attempt at writing a dev blog, yeah I am a bit nervous. Hope you like it and Your valuable feedback and contributions are always welcome.

Today I am going to solve a coding problem Diffk which is based on the Two Pointer concept.

Asked In - Facebook Interview

Problem Statement - Given an array ‘A’ of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i != j.

Time and Space Complexity Constraint

1. Try doing this in less than linear space complexity.

Example

Input :
  A : [1 3 5] 
  k : 4
Output : YES
Explanation : as 5 - 1 = 4
Enter fullscreen mode Exit fullscreen mode

Brute Force Approach - we use two loop for two indices i,j and iterate if we find any A[j]-A[i] = k and i!=j then return 1 else 0.

int diffPossible(vector<int> &A, int k) {
  int N= A.size();
  for (int i = 0; i < N; i++) {
    for (int j = i + 1; j < N; j++) {
      if (A[j] - A[i] > k) break; // No need check forward because Array is sorted so the difference is going to increase even further because A[I] is going to increase or remain same.
      if (A[j] - A[i] == k) return 1; 
    }
  }
  return 0;
}
Enter fullscreen mode Exit fullscreen mode

The Time Complexity of this approach is O(N*N).

Observation
Let's check the above approach when we have i = I and find j=J ,Diff_1 =(A[J-1]-A[I]) such that Diff_1 <k and A[J]-A[I] >k

  • This means that for i =I and j> J we are not going to find our solution because A[j] will be increasing(Array is sorted) so will A[j]-A[I].

  • when i increase then A[i] will increase too then A[J]- A[i] will decrease so till j =J-1 our A[j] -A[i] will be less than Diff_1 which is also less than k( Observation 1 ) So we will not find our solution till j =J-1. So Efficient Approach will be when we don’t start j every time with I+1 but start with j=J.

New Approach Code (Time Complexity: O(n))

int diffPossible(vector<int> &A, int k) {
    int N = A.size();
    int j = 0; 
    for (int i = 0; i < N; i++) {
        j = max(j, i+1);
        while (j < N && (A[j] - A[i] < B)) {
            j += 1;
        }
        if (A[j] - A[i] == B) return 1;
    }
    return 0;
}
Enter fullscreen mode Exit fullscreen mode

Github Solution Link

Top comments (0)

👋 Kindness is contagious

Explore a trove of insights in this engaging article, celebrated within our welcoming DEV Community. Developers from every background are invited to join and enhance our shared wisdom.

A genuine "thank you" can truly uplift someone’s day. Feel free to express your gratitude in the comments below!

On DEV, our collective exchange of knowledge lightens the road ahead and strengthens our community bonds. Found something valuable here? A small thank you to the author can make a big difference.

Okay