As the first developers to experience Hongmeng AI IDE, they used AI completion function to write complex pages that originally took 3 days.This article combines practical experience to analyze the AI empowerment capabilities of Cangjie IDE, and helps you improve the efficiency of Hongmeng development by more than 3 times.
1. Three breakthrough directions for AI to empower IDE
1.1 Intelligent code generation: from fragments to architecture
Single-line completion: Enter keyword characters to automatically generate code framework
// Press the Tab key after entering "(a:Int"
func calculate(a: Int, b: Int) -> Int {
return a + b
}
Schema Generation: Natural language generation page architecture
Enter: "Generate login page, including username, password input and login button"
@Entry
@Component
struct LoginPage {
@State username: string = ''
@State password: string = ''
build() {
Column {
TextField($username, placeholder: Text('username'))
.margin(16)
.padding(12)
.border(Color.Gray)
TextField($password, placeholder: Text('password'))
.margin(16)
.padding(12)
.border(Color.Gray)
.password(true)
Button('Login')
.margin(16)
.width('100%')
.onClick(() => {
// Login logic
})
}
.padding(24)
}
}
1.2 Intelligent Q&A: AI Tutor in Development
Ask a question directly in the IDE:
Q: "How to achieve data synchronization between Hongmeng devices?"
AI Reply:
// Data synchronization between devices
import distributedData from '@ohos.distributedData'
// Initialize distributed data management
func initDistributedData() {
distributedData.createOrGetLocalStore({
storeName: 'deviceData',
type: distributedData.StoreType.COLLECTION
}).then((store) => {
// Subscribe to data changes
store.subscribe((data) => {
console.log('Data update:', data)
})
})
}
2. Practical combat of core functions of AI empowerment
2.1 Advanced Intelligent Code Generation
Complex logic generation: Enter annotation to generate complete functions
// Input: "Calculate comfort index based on temperature and humidity"
func calculateComfort(temp: float, humidity: float) -> float {
// Comfortness index calculation formula: (1.8 * temp + 32) - 0.5 * (humidity - 10)
let comfortIndex = (1.8 * temp + 32) - 0.5 * (humidity - 10)
return comfortIndex
}
Cross-file association generation: Generate corresponding ViewModel in page file
// After entering "@State user:" into the page file, the AI will automatically generate a ViewModel
@Entry
@Component
struct UserPage {
@State user: User = User()
build() {
// Page layout...
}
}
// AI is automatically generated in ViewModel file
class User {
name: string = ''
age: number = 0
email: string = ''
fetchUserInfo() {
// Network request to obtain user information
}
}
2.2 Intelligent Tuning: Bottleneck of AI Diagnostic Performance
Memory Leak Detection:
graph TD
A[AI analyze memory snapshot] --> B{discovery point}
B -->|Activity not released | C [generate release code]
C --> D [It is recommended to add onDestroy hook]
Code optimization suggestions:
// Original code (AI tag performance issues)
for (let i = 0; i < 1000; i++) {
list.push(i) // AI tip: frequent array expansion affects performance
}
//After AI optimization
const arr = new Array(1000)
for (let i = 0; i < 1000; i++) {
arr[i] = i
}
3. Development changes brought about by AI empowerment
3.1 Comparison of efficiency improvement
Task Type | Traditional Development Time | AI Assisted Time | Efficiency Improvement |
---|---|---|---|
Page Development | 2 hours | 20 minutes | 6 times |
Complex logic implementation | 1 day | 2 hours | 4 times |
Troubleshooting | 4 hours | 30 minutes | 8 times |
3.2 Reduced development threshold
Newbie Cases:
Enter: "I want to make a pedometer application"
AI generates a complete project structure:
- src/
- main/
- ets/
- entry/
- pages/
- StepPage.ets // Step count page (data display has been implemented)
- viewmodels/
- StepViewModel.ets // Step counting logic (including data simulation)
- utils/
- StepDetector.ets // Step Detection Tool Class
4. Practical pit avoidance and best practices
4.1 Avoid AI dependency traps
- Code review must be done: There may be boundary conditions missing in AI-generated code, such as:
// AI-generated login verification (null value check is missing)
func validateLogin(username: string, password: string) {
if (username.length > 0 && password.length > 0) {
// Login logic
}
}
Optimization: Manually add null values and format verification
- Structure control: AI is good at generating single-file code, but architecture design requires manual control:
graph TD
A[Artificial Design Architecture] --> B[AI Generation Specific Implementation]
B --> C [Manual review architecture consistency]
4.2 Tips for Optimization of Prompt Words
Inefficient Prompt Word:
"Write a network request"
Efficient prompt words:
"Generate a GET request function with retry mechanism, supports JSON resolution, timeout time of 5 seconds, return Promise"
Tip Word Template:
"Generate {function description}, require {technical points 1}, {technical points 2}, avoid {FAQ}"
Top comments (0)