As the first developers to experience Hongmeng AI IDE, they used AI completion function to write complex pages that originally took 3 days.This article combines practical experience to analyze the AI empowerment capabilities of Cangjie IDE, and helps you improve the efficiency of Hongmeng development by more than 3 times.
1. Three breakthrough directions for AI to empower IDE
1.1 Intelligent code generation: from fragments to architecture
Single-line completion: Enter keyword characters to automatically generate code framework
// Press the Tab key after entering "(a:Int"
func calculate(a: Int, b: Int) -> Int {
    return a + b
}
Schema Generation: Natural language generation page architecture
Enter: "Generate login page, including username, password input and login button"
@Entry
@Component
struct LoginPage {
    @State username: string = ''
    @State password: string = ''
    build() {
        Column {
TextField($username, placeholder: Text('username'))
                .margin(16)
                .padding(12)
                .border(Color.Gray)
TextField($password, placeholder: Text('password'))
                .margin(16)
                .padding(12)
                .border(Color.Gray)
                .password(true)
Button('Login')
                .margin(16)
                .width('100%')
                .onClick(() => {
// Login logic
                })
        }
        .padding(24)
    }
}
1.2 Intelligent Q&A: AI Tutor in Development
Ask a question directly in the IDE:
Q: "How to achieve data synchronization between Hongmeng devices?"
AI Reply:
// Data synchronization between devices
import distributedData from '@ohos.distributedData'
// Initialize distributed data management
func initDistributedData() {
    distributedData.createOrGetLocalStore({
        storeName: 'deviceData',
        type: distributedData.StoreType.COLLECTION
    }).then((store) => {
// Subscribe to data changes
        store.subscribe((data) => {
console.log('Data update:', data)
        })
    })
}
2. Practical combat of core functions of AI empowerment
2.1 Advanced Intelligent Code Generation
Complex logic generation: Enter annotation to generate complete functions
// Input: "Calculate comfort index based on temperature and humidity"
func calculateComfort(temp: float, humidity: float) -> float {
// Comfortness index calculation formula: (1.8 * temp + 32) - 0.5 * (humidity - 10)
    let comfortIndex = (1.8 * temp + 32) - 0.5 * (humidity - 10)
    return comfortIndex
}
Cross-file association generation: Generate corresponding ViewModel in page file
// After entering "@State user:" into the page file, the AI will automatically generate a ViewModel
@Entry
@Component
struct UserPage {
    @State user: User = User()
    build() {
// Page layout...
    }
}
// AI is automatically generated in ViewModel file
class User {
    name: string = ''
    age: number = 0
    email: string = ''
    fetchUserInfo() {
// Network request to obtain user information
    }
}
2.2 Intelligent Tuning: Bottleneck of AI Diagnostic Performance
Memory Leak Detection:
graph TD
A[AI analyze memory snapshot] --> B{discovery point}
B -->|Activity not released | C [generate release code]
C --> D [It is recommended to add onDestroy hook]
Code optimization suggestions:
// Original code (AI tag performance issues)
for (let i = 0; i < 1000; i++) {
list.push(i) // AI tip: frequent array expansion affects performance
}
//After AI optimization
const arr = new Array(1000)
for (let i = 0; i < 1000; i++) {
    arr[i] = i
}
3. Development changes brought about by AI empowerment
3.1 Comparison of efficiency improvement
| Task Type | Traditional Development Time | AI Assisted Time | Efficiency Improvement | 
|---|---|---|---|
| Page Development | 2 hours | 20 minutes | 6 times | 
| Complex logic implementation | 1 day | 2 hours | 4 times | 
| Troubleshooting | 4 hours | 30 minutes | 8 times | 
3.2 Reduced development threshold
Newbie Cases:
Enter: "I want to make a pedometer application"
AI generates a complete project structure:
- src/
  - main/
    - ets/
      - entry/
        - pages/
- StepPage.ets // Step count page (data display has been implemented)
        - viewmodels/
- StepViewModel.ets // Step counting logic (including data simulation)
        - utils/
- StepDetector.ets // Step Detection Tool Class
4. Practical pit avoidance and best practices
4.1 Avoid AI dependency traps
- Code review must be done: There may be boundary conditions missing in AI-generated code, such as:
 
// AI-generated login verification (null value check is missing)
   func validateLogin(username: string, password: string) {
       if (username.length > 0 && password.length > 0) {
// Login logic
       }
   }
Optimization: Manually add null values and format verification
- Structure control: AI is good at generating single-file code, but architecture design requires manual control:
 
   graph TD
A[Artificial Design Architecture] --> B[AI Generation Specific Implementation]
B --> C [Manual review architecture consistency]
4.2 Tips for Optimization of Prompt Words
Inefficient Prompt Word:
"Write a network request"
Efficient prompt words:
"Generate a GET request function with retry mechanism, supports JSON resolution, timeout time of 5 seconds, return Promise"
Tip Word Template:
"Generate {function description}, require {technical points 1}, {technical points 2}, avoid {FAQ}"
    
Top comments (0)