DEV Community

Dr. Carlos Ruiz Viquez
Dr. Carlos Ruiz Viquez

Posted on

**Adversarial Regularization via Generative Adversarial Netw

Adversarial Regularization via Generative Adversarial Networks (RAG)

Here's a unique example of RAG system code in PyTorch:

class RAG(nn.Module):
    def __init__(self, generator, discriminator, device):
        super(RAG, self).__init__()
        self.generator = generator.to(device)
        self.discriminator = discriminator.to(device)
        self.device = device

    def forward(self, data, noise):
        adv_loss = 0
        # Generator learns to generate data given noise
        gen_data = self.generator(noise)
        # Discriminator learns to distinguish real and fake data
        real_loss = nn.BCELoss()(self.discriminator(data), torch.ones_like(self.discriminator(data)))
        fake_loss = nn.BCELoss()(self.discriminator(gen_data, gen_data.detach()), torch.zeros_like(self.discriminator(gen_data, gen_data.detach())))
        # Regularization term
        adv_loss.backward(retain_graph=True)
        return adv_loss
Enter fullscreen mode Exit fullscreen mode

This code snippet demonstrates a basic implementation of RAG, where we use a generator network to produce data from a random noise input, and a discriminator network to distinguish between real and fake data. The regularization term is implemented by computing the gradient of the adversarial loss with respect to the generator's weights, while keeping the discriminator's weights frozen. This encourages the generator to produce data that is more challenging for the discriminator to distinguish from real data.


Publicado automáticamente

Top comments (0)