Adversarial Regularization via Generative Adversarial Networks (RAG)
Here's a unique example of RAG system code in PyTorch:
class RAG(nn.Module):
def __init__(self, generator, discriminator, device):
super(RAG, self).__init__()
self.generator = generator.to(device)
self.discriminator = discriminator.to(device)
self.device = device
def forward(self, data, noise):
adv_loss = 0
# Generator learns to generate data given noise
gen_data = self.generator(noise)
# Discriminator learns to distinguish real and fake data
real_loss = nn.BCELoss()(self.discriminator(data), torch.ones_like(self.discriminator(data)))
fake_loss = nn.BCELoss()(self.discriminator(gen_data, gen_data.detach()), torch.zeros_like(self.discriminator(gen_data, gen_data.detach())))
# Regularization term
adv_loss.backward(retain_graph=True)
return adv_loss
This code snippet demonstrates a basic implementation of RAG, where we use a generator network to produce data from a random noise input, and a discriminator network to distinguish between real and fake data. The regularization term is implemented by computing the gradient of the adversarial loss with respect to the generator's weights, while keeping the discriminator's weights frozen. This encourages the generator to produce data that is more challenging for the discriminator to distinguish from real data.
Publicado automáticamente
Top comments (0)