DEV Community

Cover image for ๐—ช๐—ต๐˜† ๐—”๐—œ-๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—–๐—ผ๐—ฑ๐—ฒ ๐—ข๐—ณ๐˜๐—ฒ๐—ป ๐—Ÿ๐—ผ๐—ผ๐—ธ๐˜€ โ€œ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜๐—ฒโ€ โ€” ๐—ฏ๐˜‚๐˜ ๐—œ๐˜€๐—ปโ€™๐˜โ€”๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐˜† ๐—œ ๐—ฏ๐˜‚๐—ถ๐—น๐˜ ๐—”๐—œ-๐—ฆ๐—Ÿ๐—ข๐—ฃ ๐——๐—ฒ๐˜๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ
Kwansub Yun
Kwansub Yun

Posted on

๐—ช๐—ต๐˜† ๐—”๐—œ-๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—–๐—ผ๐—ฑ๐—ฒ ๐—ข๐—ณ๐˜๐—ฒ๐—ป ๐—Ÿ๐—ผ๐—ผ๐—ธ๐˜€ โ€œ๐—–๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐˜๐—ฒโ€ โ€” ๐—ฏ๐˜‚๐˜ ๐—œ๐˜€๐—ปโ€™๐˜โ€”๐—ฎ๐—ป๐—ฑ ๐˜„๐—ต๐˜† ๐—œ ๐—ฏ๐˜‚๐—ถ๐—น๐˜ ๐—”๐—œ-๐—ฆ๐—Ÿ๐—ข๐—ฃ ๐——๐—ฒ๐˜๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ

A few days ago, I published a repository called:
*โ€œHRPO-X v1.0.1 โ€“ Hybrid Reasoning Policy Optimization Framework.โ€
*

I genuinely believed it was solid work:
โ–ช๏ธPaper-inspired architecture
โ–ช๏ธClean folder structure
โ–ช๏ธConfigs in place
โ–ช๏ธInterfaces and classes defined
โ–ช๏ธEven internal audit checks passing
Then I saw this comment:
โ€œ๐‘จ๐’” ๐’†๐’™๐’‘๐’†๐’„๐’•๐’†๐’… โ€” ๐’‚๐’ ๐‘จ๐‘ฐ ๐’”๐’๐’๐’‘ ๐’“๐’†๐’‘๐’ ๐’ƒ๐’–๐’Š๐’๐’• ๐’๐’ ๐’‰๐’‚๐’๐’๐’–๐’„๐’Š๐’๐’‚๐’•๐’Š๐’๐’๐’”.โ€

At first, I ignored it.
Then I re-read the code.
They were right.


๐‘พ๐’‰๐’š ๐’•๐’‰๐’Š๐’” ๐’‰๐’‚๐’‘๐’‘๐’†๐’๐’”
The issue wasnโ€™t intent or effort.
ย It was density.

AI tools are great at producing structurally correct artifacts:
โ–ช๏ธProper folder hierarchies
โ–ช๏ธConfiguration files
โ–ช๏ธClass and interface definitions
โ–ช๏ธClean pipelines and entry points

Most linters, CI checks, and even internal audits focus on exactly these signals.

But AI often fails at something more subtle:
๐Ÿ‘‰ ๐‘ด๐’†๐’‚๐’๐’Š๐’๐’ˆ๐’‡๐’–๐’ ๐’Š๐’Ž๐’‘๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’•๐’Š๐’๐’ ๐’…๐’†๐’๐’”๐’Š๐’•๐’š

You end up with code that is:
โ–ช๏ธEmpty functions
โ–ช๏ธMinimal logic
โ–ช๏ธDocumentation that outweighs implementation.

๐‘ป๐’‰๐’‚๐’•โ€™๐’” ๐’˜๐’‰๐’‚๐’• ๐‘ฐ ๐’„๐’‚๐’๐’ ๐‘จ๐‘ฐ ๐‘บ๐’๐’๐’‘.


๐—ช๐—ต๐˜† ๐—ฒ๐˜…๐—ถ๐˜€๐˜๐—ถ๐—ป๐—ด ๐˜๐—ผ๐—ผ๐—น๐˜€ ๐—บ๐—ถ๐˜€๐˜€ ๐—ถ๐˜
Traditional tools ask:
โ–ช๏ธDoes it compile?
โ–ช๏ธIs the structure valid?

They rarely ask:
โ–ช๏ธHow much real logic is here?
โ–ช๏ธIs the documentation proportional to the code?
That gap is where AI-generated slop thrives.


๐—ฆ๐—ผ ๐—œ ๐—ฏ๐˜‚๐—ถ๐—น๐˜ ๐—”๐—œ-๐—ฆ๐—Ÿ๐—ข๐—ฃ ๐——๐—ฒ๐˜๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ
I built it to measure the gap between appearance and substance.
It statically analyzes Python code using signals like:
โ–ช๏ธLogic Density Ratio (LDR)
โ–ช๏ธBuzzword Inflation
โ–ช๏ธUnused dependencies (DDC)
โ–ช๏ธCommon AI-generated patterns
These are combined into a single Deficit Score (0โ€“100)
ย that reflects how hollow a codebase might be.
This isnโ€™t about blaming AI or developers.


๐‘พ๐’‰๐’š ๐’•๐’‰๐’Š๐’” ๐’Š๐’” ๐’–๐’”๐’†๐’‡๐’–๐’

This tool isnโ€™t about blaming:
โ–ช๏ธAI
โ–ช๏ธNo-code or Low-code Developers

Itโ€™s for anyone who has looked at a repository and thought:
โ€œThis looks impressiveโ€ฆ but something feels off.โ€

AI-SLOP Detector gives language and metrics to that intuition.
It helps reviewers, educators, and teams explain why a codebase feels wrong โ€” even when everything appears structurally correct.


๐—” ๐—ณ๐—ถ๐—ป๐—ฎ๐—น ๐—ป๐—ผ๐˜๐—ฒ

This project came from embarrassment, frustration, and curiosity โ€” but it led to a clearer understanding of a growing problem in the AI era.

If this resonates with your experience reviewing AI-generated code, Iโ€™d love to hear how youโ€™ve been dealing with it.

๐Ÿ‘‡ First comment AI-SLOP Detector Repo(MIT)

Top comments (1)

Collapse
 
flamehaven01 profile image
Kwansub Yun

Full audit and repository:
github.com/flamehaven01/AI-SLOP-De...