DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

ColorJitter in PyTorch (4)

Buy Me a Coffee

*Memos:

ColorJitter() can randomly change the brightness, contrast, saturation and hue of an image as shown below. *It's about hue argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

huen05_05_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.5, 0.5])
    # transform=ColorJitter(hue=0.5)
)

huen05_0_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.5, 0])
)

hue0_05_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0, 0.5])
)

hue01_01_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0.1, 0.1])
)

hue02_02_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0.2, 0.2])
)

hue03_03_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0.3, 0.3])
)

hue04_04_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0.4, 0.4])
)

hue05_05_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[0.5, 0.5])
)

huen01n01_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.1, -0.1])
)

huen02n02_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.2, -0.2])
)

huen03n03_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.3, -0.3])
)

huen04n04_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.4, -0.4])
)

huen05n05_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(hue=[-0.5, -0.5])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data")
show_images1(data=huen05_05_data, main_title="huen05_05_data")
show_images1(data=huen05_0_data, main_title="huen05_0_data")
show_images1(data=hue0_05_data, main_title="hue0_05_data")
print()
show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data")
show_images1(data=hue01_01_data, main_title="hue01_01_data")
show_images1(data=hue02_02_data, main_title="hue02_02_data")
show_images1(data=hue03_03_data, main_title="hue03_03_data")
show_images1(data=hue04_04_data, main_title="hue04_04_data")
show_images1(data=hue05_05_data, main_title="hue05_05_data")
print()
show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data")
show_images1(data=huen01n01_data, main_title="huen01n01_data")
show_images1(data=huen02n02_data, main_title="huen02n02_data")
show_images1(data=huen03n03_data, main_title="huen03n03_data")
show_images1(data=huen04n04_data, main_title="huen04n04_data")
show_images1(data=huen05n05_data, main_title="huen05n05_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=0, c=0, s=0, h=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        cj = ColorJitter(brightness=b, contrast=c,
                         saturation=s, hue=h)
        plt.imshow(X=cj(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0])
show_images2(data=origin_data, main_title="huen05_05_data", h=[-0.5, 0.5])
# ↑ show_images2(data=origin_data, main_title="huen05_data", h=0.5)
show_images2(data=origin_data, main_title="huen05_0_data", h=[-0.5, 0])
show_images2(data=origin_data, main_title="hue0_05_data", h=[0, 0.5])
print()
show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0])
show_images2(data=origin_data, main_title="hue01_01_data", h=[0.1, 0.1])
show_images2(data=origin_data, main_title="hue02_02_data", h=[0.2, 0.2])
show_images2(data=origin_data, main_title="hue03_03_data", h=[0.3, 0.3])
show_images2(data=origin_data, main_title="hue04_04_data", h=[0.4, 0.4])
show_images2(data=origin_data, main_title="hue05_05_data", h=[0.5, 0.5])
print()
show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0])
show_images2(data=origin_data, main_title="huen01n01_data", h=[-0.1, -0.1])
show_images2(data=origin_data, main_title="huen02n02_data", h=[-0.2, -0.2])
show_images2(data=origin_data, main_title="huen03n03_data", h=[-0.3, -0.3])
show_images2(data=origin_data, main_title="huen04n04_data", h=[-0.4, -0.4])
show_images2(data=origin_data, main_title="huen05n05_data", h=[-0.5, -0.5])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Hostinger image

Get n8n VPS hosting 3x cheaper than a cloud solution

Get fast, easy, secure n8n VPS hosting from $4.99/mo at Hostinger. Automate any workflow using a pre-installed n8n application and no-code customization.

Start now

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay