DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

ColorJitter in PyTorch (3)

Buy Me a Coffee

*Memos:

ColorJitter() can randomly change the brightness, contrast, saturation and hue of an image as shown below. *It's about contrast argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ColorJitter

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

saturation1_1origin_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[1, 1])
    # transform=ColorJitter(saturation=0)
)

saturation0_5_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0, 5])
    # transform=ColorJitter(saturation=4)
)

saturation0_1_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0, 1])
)

saturation1_5_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[1, 5])
)

saturation08_08_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0.8, 0.8])
)

saturation06_06_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0.6, 0.6])
)

saturation04_04_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0.4, 0.4])
)

saturation02_02_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0.2, 0.2])
)

saturation0_0_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[0, 0])
)

saturation2_2_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[2, 2])
)

saturation4_4_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[4, 4])
)

saturation8_8_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[8, 8])
)

saturation16_16_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[16, 16])
)

saturation50_50_data = OxfordIIITPet(
    root="data",
    transform=ColorJitter(saturation=[50, 50])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=saturation1_1origin_data, 
             main_title="saturation1_1origin_data")
show_images1(data=saturation0_5_data, main_title="saturation0_5_data")
show_images1(data=saturation0_1_data, main_title="saturation0_1_data")
show_images1(data=saturation1_5_data, main_title="saturation1_5_data")
print()
show_images1(data=saturation1_1origin_data,
             main_title="saturation1_1origin_data")
show_images1(data=saturation08_08_data, main_title="saturation08_08_data")
show_images1(data=saturation06_06_data, main_title="saturation06_06_data")
show_images1(data=saturation04_04_data, main_title="saturation04_04_data")
show_images1(data=saturation02_02_data, main_title="saturation02_02_data")
show_images1(data=saturation0_0_data, main_title="saturation0_0_data")
print()
show_images1(data=saturation1_1origin_data,
             main_title="saturation1_1origin_data")
show_images1(data=saturation2_2_data, main_title="saturation2_2_data")
show_images1(data=saturation4_4_data, main_title="saturation4_4_data")
show_images1(data=saturation8_8_data, main_title="saturation8_8_data")
show_images1(data=saturation16_16_data, main_title="saturation16_16_data")
show_images1(data=saturation50_50_data, main_title="saturation50_50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=0, c=0, s=0, h=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        cj = ColorJitter(brightness=b, contrast=c,
                         saturation=s, hue=h)
        plt.imshow(X=cj(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="saturation1_1origin_data", s=[1, 1])
show_images2(data=origin_data, main_title="saturation0_5_data", s=[0, 5])
# ↑ show_images2(data=origin_data, main_title="saturation4_data", s=4)
show_images2(data=origin_data, main_title="saturation0_1_data", s=[0, 1])
show_images2(data=origin_data, main_title="saturation1_5_data", s=[1, 5])
print()
show_images2(data=origin_data, main_title="saturation1_1origin_data", s=[1, 1])
show_images2(data=origin_data, main_title="saturation08_08_data", s=[0.8, 0.8])
show_images2(data=origin_data, main_title="saturation06_06_data", s=[0.6, 0.6])
show_images2(data=origin_data, main_title="saturation04_04_data", s=[0.4, 0.4])
show_images2(data=origin_data, main_title="saturation02_02_data", s=[0.2, 0.2])
show_images2(data=origin_data, main_title="saturation0_0_data", s=[0, 0])
print()
show_images2(data=origin_data, main_title="saturation1_1origin_data", s=[1, 1])
show_images2(data=origin_data, main_title="saturation2_2_data", s=[2, 2])
show_images2(data=origin_data, main_title="saturation4_4_data", s=[4, 4])
show_images2(data=origin_data, main_title="saturation8_8_data", s=[8, 8])
show_images2(data=origin_data, main_title="saturation16_16_data", s=[16, 16])
show_images2(data=origin_data, main_title="saturation50_50_data", s=[50, 50])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Postmark Image

Speedy emails, satisfied customers

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

AWS GenAI LIVE!

GenAI LIVE! is a dynamic live-streamed show exploring how AWS and our partners are helping organizations unlock real value with generative AI.

Tune in to the full event

DEV is partnering to bring live events to the community. Join us or dismiss this billboard if you're not interested. ❤️