The master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus provides a temporal pattern of sleep and wake that - like many other behavioural and physiological rhythms - is oppositely phased in nocturnal and diurnal animals. The SCN primarily uses environmental light, perceived through the retina, to synchronize its endogenous circadian rhythms with the exact 24 h light/dark cycle of the outside world. The light responsiveness of the SCN is maximal during the night in both nocturnal and diurnal species. Behavioural arousal during the resting period not only perturbs sleep homeostasis, but also acts as a potent non-photic synchronizing cue. The feedback action of arousal on the SCN is mediated by processes involving several brain nuclei and neurotransmitters, which ultimately change the molecular functions of SCN pacemaker cells. Arousing stimuli during the sleeping period differentially affect the circadian system of nocturnal and diurnal species, as evidenced by the different circadian windows of sensitivity to behavioural arousal. In addition, arousing stimuli reduce and increase light resetting in nocturnal and diurnal species, respectively. It is important to address further question of circadian impairments associated with shift work and trans-meridian travel not only in the standard nocturnal laboratory animals but also in diurnal animal models.The paper reviews the relations between sex and brain in light of the binary conceptualization of these relations and the challenges posed to it by the 'mosaic' hypothesis. Recent formulations of the binary framework range from arguing that the typical male brain is different from the typical female brain to claiming that brains are typically male or female because brain structure can be used to predict the sex category (female/male) of the brain's owner. These formulations are challenged by evidence that sex effects on the brain may be opposite under different conditions, that human brains are comprised of mosaics of female-typical and male-typical features, and that sex category explains only a small part of the variability in human brain structure. These findings led to a new, non-binary, framework, according to which mosaic brains reside in a multi-dimensional space that cannot meaningfully be reduced to a male-female continuum or to a binary variable. This framework may also apply to sex-related variables and has implications for research.Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.Neuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g., food) in its ability to engage the brain's reward circuitry. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions, including the ventromedial prefrontal cortex, ventral striatum, and insula. TH5427 manufacturer Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.The incidence and impact of ocular side effects in patients treated with checkpoint inhibitors are not clearly defined. We reviewed prospective phase III clinical trials of checkpoint inhibitors applied in lung cancer, renal cell cancer, and melanoma. Case reports of the occurrence of ocular toxicities in patients receiving immune checkpoint inhibitors were also included. Of the 35 articles corresponding to phase III clinical trials with checkpoint inhibitors, ocular toxicity was described in four. Forty-six clinical cases of ocular toxicity after therapy with checkpoint inhibitors have been reported. The most frequently described ocular toxicities are uveitis, inflammatory orbital disease, and alterations of the ocular surface. Ocular toxicity is underestimated in checkpoint inhibitors clinical trials. Early ophthalmic examination and treatment with corticosteroids may improve the visual prognosis in these patients.Treatments of numerous systemic and local diseases of different etiologies may be accompanied by an unwanted side effect in the form of uveitis. We inform readers about medications that have the potential to cause uveitis and analyze the strength of association of these medications with uveitis. Subsequently, cessation of medication or appropriate treatment can be individualized for each patient for the purpose of preventing further damage to tissue structure and function. Being aware of these associations, physicians may readily identify medications that may cause uveitis and avoid expensive and unnecessary clinical and laboratory testing.Exposure of humans to second-hand smoking (SHS) increases glucose and lipid metabolic disorders. The link of hepatic metabolic dysfunction to environmental cigarette smoking has been noticed, but the related mechanism is still unclear. C57BL/6 mice with normal food diet (NFD) or high fat diet (HFD) were exposed to 15 min cigarette smoking twice a day in a 0.038 m3 box for 4 weeks, and the concentration of nicotine in the air of the box was 21.05 mg/m3 during the smoke exposure. Liver tissues and serum were collected for gene expression and biochemistry test. The fecal microbiota was also checked through 16S rDNA sequences. Cigarette smoking exposure increased the accumulation of total cholesterol (TC) in liver, and the expression of cholesterol synthesis-related genes was upregulated. The expression of CYP8B1 protein was significantly down-regulated, and the ratio of cholic acid (CA) to chenodeoxycholic acid (CDCA) was significantly reduced in the liver of mice exposed to cigarette smoking especially for HFD group.TH5427 manufacturer
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)