Setting Up a Miniconda Environment for NASA PDS Data Analysis on Windows 11 (2025 Standards)
Absolutely! Let me help you craft a Miniconda environment setup guide tailored for NASA PDS (Planetary Data System) data analysis on a powerful Windows 11 laptop (32 GB RAM, Intel Core i9, no dedicated GPU). The environment will focus on modern 2025 standards and include advanced tools for:
- Planetary datasets (spectral, imaging, tabular)
- Higher-level Digital Signal Analysis (DSA)
- Geospatial and remote sensing
- Scientific computing and machine learning
- Visualization and interactive exploration
Step 1: Install Miniconda
Download and install Miniconda for Windows:
https://docs.conda.io/en/latest/miniconda.html
Follow the Windows installer prompts and add conda to your PATH during installation for ease of use.
Step 2: Create Conda Environment
Open Anaconda Prompt or Windows Terminal and create a new environment:
----
```
bash
conda create -n pds-analysis python=3.11
Activate it:
bash
conda activate pds-analysis
Step 3: Install Core Scientific and Data Libraries
Install core libs for numerical analysis, data manipulation, and basic plotting:
bash
conda install numpy scipy pandas matplotlib seaborn jupyterlab ipython
Step 4: Install NASA PDS & Planetary Science Specific Libraries
- pds4_tools: Official NASA PDS Python toolkit for reading PDS4 data formats
- planetarypy: Python library for planetary science computations
- spiceypy: NASA’s SPICE toolkit Python wrapper for planetary geometry and mission planning
bash
pip install pds4_tools planetarypy spiceypy
Step 5: Geospatial and Remote Sensing Libraries
Install libraries suitable for planetary imagery, raster/vector data, and hyperspectral analysis:
bash
conda install -c conda-forge rasterio gdal geopandas shapely fiona pyproj cartopy xarray dask
pip install spectral # for hyperspectral image analysis
pip install scikit-image # advanced image processing
Step 6: Advanced Digital Signal Analysis (DSA) and ML
Leverage Python’s ML ecosystem and signal processing libraries:
bash
conda install -c conda-forge scikit-learn statsmodels xgboost lightgbm librosa
pip install PyWavelets # wavelet transforms
pip install neurokit2 # advanced biosignal analysis tools useful for complex signal processing workflows
Step 7: Deep Learning (Optional, CPU optimized)
If you want deep learning tools (TensorFlow and PyTorch CPU versions):
bash
conda install -c conda-forge tensorflow pytorch torchvision torchaudio cpuonly
Step 8: Visualization and Interactive Tools
Install powerful plotting, 3D visualization, and interactive exploration libraries:
bash
conda install -c conda-forge plotly bokeh holoviews pyvista mayavi ipywidgets
pip install ipyleaflet # interactive maps in Jupyter
Step 9: Additional Utilities
Handy utilities for handling complex data formats and workflow automation:
bash
pip install netcdf4 h5py rasterstats geopandas fiona tqdm requests
Step 10: Verify Installation
Check installed packages:
bash
conda list
Launch JupyterLab to start working interactively:
bash
jupyter lab
Optional: Create an environment.yml
for Quick Reproduction
yaml
name: pds-analysis
channels:
- conda-forge
- defaults
dependencies:
- python=3.11
- numpy
- scipy
- pandas
- matplotlib
- seaborn
- jupyterlab
- ipython
- rasterio
- gdal
- geopandas
- shapely
- fiona
- pyproj
- cartopy
- xarray
- dask
- scikit-learn
- statsmodels
- xgboost
- lightgbm
- librosa
- tensorflow
- pytorch
- torchvision
- torchaudio
- cpuonly
- plotly
- bokeh
- holoviews
- pyvista
- mayavi
- ipywidgets
- netcdf4
- h5py
- rasterstats
- tqdm
- requests
pip:
- pds4_tools
- planetarypy
- spiceypy
- spectral
- scikit-image
- PyWavelets
- neurokit2
- ipyleaflet
Save it as environment.yml
and create the environment with:
bash
conda env create -f environment.yml
conda activate pds-analysis
Summary
This setup provides you with a robust Python environment tailored to NASA PDS data analysis and advanced planetary science workflows, optimized for a powerful Windows 11 laptop without a dedicated GPU. It covers data ingestion, geospatial analysis, digital signal processing, machine learning, and state-of-the-art visualization.
Top comments (0)