DEV Community

Narednra Reddy Yadama
Narednra Reddy Yadama

Posted on

๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ-๐˜€๐—ฐ๐—ฎ๐—น๐—ฒ ๐—ก๐—ผ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€ ๐—ถ๐—ป ๐—๐—ฎ๐˜ƒ๐—ฎ โ€” ๐˜๐—ต๐—ฒ ๐—ฏ๐—น๐˜‚๐—ฒ๐—ฝ๐—ฟ๐—ถ๐—ป๐˜ ๐—œโ€™๐—ฑ ๐˜‚๐˜€๐—ฒ ๐˜๐—ผ๐—ฑ๐—ฎ๐˜†

Billions of events. Millions of users. Dozens of channels (push, email, SMS, in-app, web).

Hereโ€™s a production-ready architecture that scales without catching fire ๐Ÿ‘‡

๐—ช๐—ต๐—ฎ๐˜ โ€œ๐—น๐—ฎ๐—ฟ๐—ด๐—ฒ-๐˜€๐—ฐ๐—ฎ๐—น๐—ฒโ€ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—น๐˜† ๐—บ๐—ฒ๐—ฎ๐—ป๐˜€

โ€ข Fan-out to 1Mโ€“50M recipients per campaign

โ€ข <2s end-to-end latency for real-time AND guaranteed delivery for batched jobs

โ€ข Channel mix: APNS/FCM, Email (SES/SendGrid), SMS (Twilio), WebPush, in-app/WebSocket

๐—–๐—ผ๐—ฟ๐—ฒ ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ (๐—๐—ฎ๐˜ƒ๐—ฎ / ๐—ฆ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ด ๐—•๐—ผ๐—ผ๐˜)

  1. Ingestion API (Spring Boot, gRPC/REST)

Receives events (signup, purchase, alert), validates, writes to Kafka.

  1. Event Bus โ†’ Kafka

Topics per domain (user.events, order.events, alerts.*).

Partitions sized for throughput; compaction for idempotent keys.

  1. Orchestrator (Java + Kafka Streams/Flink)

Enrich: user profile, preferences, quiet hours, locale

Decide channel(s) via rules/ML

Produce a Notification Job (jobId, audience, templates, ttl)

  1. Fan-out Workers (Spring Boot + Reactor)

Pull from jobs.* topics

Chunk audiences (e.g., 10k/user batch)

Rate-limit per vendor + per tenant

Write to Provider Queues (Redis Streams/SQS)

  1. Channel Adaptors (stateless Java services)

Push: FCM/APNS SDKs (batch send, collapse keys)

Email: SES/SendGrid with templates + DKIM/DMARC

SMS: Twilio + per-country sender pools

๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† ๐—ฝ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ

โ€ข Idempotency everywhere (messageId, vendor dedupeKey)

โ€ข Backpressure: control with Kafka consumer lag + token buckets per provider

โ€ข Retry strategy: exponential backoff, max attempts, DLQ (jobs.dlq.*)

โ€ข Cold start? Pre-warm connection pools to APNS/FCM, keep-alive TLS

๐—–๐—ฎ๐—ฝ๐—ฎ๐—ฐ๐—ถ๐˜๐˜† ๐—บ๐—ฎ๐˜๐—ต (๐˜€๐—ฎ๐—ป๐—ถ๐˜๐˜† ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ)

If a provider caps at 5k req/s and your median payload fans out 200 users per request,

you can move ~1M users/min per adaptor. Horizontal scale by shards.

๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฐ๐—ต๐—ผ๐—ถ๐—ฐ๐—ฒ๐˜€ (๐—ฏ๐—ฎ๐˜๐˜๐—น๐—ฒ-๐˜๐—ฒ๐˜€๐˜๐—ฒ๐—ฑ)

Spring Boot + WebFlux/Reactor (high-concurrency IO)
Temporal (optional) for complex campaign workflows

๐—ฃ๐—ถ๐˜๐—ณ๐—ฎ๐—น๐—น๐˜€ ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—ต๐—ถ๐˜ (๐—ฎ๐—ป๐—ฑ ๐—ต๐—ผ๐˜„ ๐˜๐—ผ ๐—ฑ๐—ผ๐—ฑ๐—ด๐—ฒ ๐˜๐—ต๐—ฒ๐—บ)

โ€ข APNS/FCM token decay โ†’ nightly cleanup job with feedback services

โ€ข Compliance (GDPR/CCPA) โ†’ data minimization + TTL on personal data

โ€ข Quiet hours / time-zone drift โ†’ schedule by user local time

๐— ๐—ฉ๐—ฃ ๐—ฟ๐—ผ๐—น๐—น๐—ผ๐˜‚๐˜ ๐—ฝ๐—น๐—ฎ๐—ป (๐Ÿฐ ๐˜€๐—ฝ๐—ฟ๐—ถ๐—ป๐˜๐˜€)

Email + in-app, single tenant, end-to-end instrumentation

Push (FCM/APNS) + delivery tracking + retries

If youโ€™re planning a notification platform for millions of users, Java gives you the ergonomics of Spring and the horsepower of the JVM to keep latency low and reliability high.

Top comments (0)