Billions of events. Millions of users. Dozens of channels (push, email, SMS, in-app, web).
Hereโs a production-ready architecture that scales without catching fire ๐
๐ช๐ต๐ฎ๐ โ๐น๐ฎ๐ฟ๐ด๐ฒ-๐๐ฐ๐ฎ๐น๐ฒโ ๐ฟ๐ฒ๐ฎ๐น๐น๐ ๐บ๐ฒ๐ฎ๐ป๐
โข Fan-out to 1Mโ50M recipients per campaign
โข <2s end-to-end latency for real-time AND guaranteed delivery for batched jobs
โข Channel mix: APNS/FCM, Email (SES/SendGrid), SMS (Twilio), WebPush, in-app/WebSocket
๐๐ผ๐ฟ๐ฒ ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ (๐๐ฎ๐๐ฎ / ๐ฆ๐ฝ๐ฟ๐ถ๐ป๐ด ๐๐ผ๐ผ๐)
- Ingestion API (Spring Boot, gRPC/REST)
Receives events (signup, purchase, alert), validates, writes to Kafka.
- Event Bus โ Kafka
Topics per domain (user.events, order.events, alerts.*).
Partitions sized for throughput; compaction for idempotent keys.
- Orchestrator (Java + Kafka Streams/Flink)
Enrich: user profile, preferences, quiet hours, locale
Decide channel(s) via rules/ML
Produce a Notification Job (jobId, audience, templates, ttl)
- Fan-out Workers (Spring Boot + Reactor)
Pull from jobs.* topics
Chunk audiences (e.g., 10k/user batch)
Rate-limit per vendor + per tenant
Write to Provider Queues (Redis Streams/SQS)
- Channel Adaptors (stateless Java services)
Push: FCM/APNS SDKs (batch send, collapse keys)
Email: SES/SendGrid with templates + DKIM/DMARC
SMS: Twilio + per-country sender pools
๐ฆ๐ฐ๐ฎ๐น๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ ๐ฝ๐ฎ๐๐๐ฒ๐ฟ๐ป๐ ๐๐ต๐ฎ๐ ๐บ๐ฎ๐๐๐ฒ๐ฟ
โข Idempotency everywhere (messageId, vendor dedupeKey)
โข Backpressure: control with Kafka consumer lag + token buckets per provider
โข Retry strategy: exponential backoff, max attempts, DLQ (jobs.dlq.*)
โข Cold start? Pre-warm connection pools to APNS/FCM, keep-alive TLS
๐๐ฎ๐ฝ๐ฎ๐ฐ๐ถ๐๐ ๐บ๐ฎ๐๐ต (๐๐ฎ๐ป๐ถ๐๐ ๐ฐ๐ต๐ฒ๐ฐ๐ธ)
If a provider caps at 5k req/s and your median payload fans out 200 users per request,
you can move ~1M users/min per adaptor. Horizontal scale by shards.
๐ง๐ฒ๐ฐ๐ต ๐ฐ๐ต๐ผ๐ถ๐ฐ๐ฒ๐ (๐ฏ๐ฎ๐๐๐น๐ฒ-๐๐ฒ๐๐๐ฒ๐ฑ)
Spring Boot + WebFlux/Reactor (high-concurrency IO)
Temporal (optional) for complex campaign workflows
๐ฃ๐ถ๐๐ณ๐ฎ๐น๐น๐ ๐๐ผ๐โ๐น๐น ๐ต๐ถ๐ (๐ฎ๐ป๐ฑ ๐ต๐ผ๐ ๐๐ผ ๐ฑ๐ผ๐ฑ๐ด๐ฒ ๐๐ต๐ฒ๐บ)
โข APNS/FCM token decay โ nightly cleanup job with feedback services
โข Compliance (GDPR/CCPA) โ data minimization + TTL on personal data
โข Quiet hours / time-zone drift โ schedule by user local time
๐ ๐ฉ๐ฃ ๐ฟ๐ผ๐น๐น๐ผ๐๐ ๐ฝ๐น๐ฎ๐ป (๐ฐ ๐๐ฝ๐ฟ๐ถ๐ป๐๐)
Email + in-app, single tenant, end-to-end instrumentation
Push (FCM/APNS) + delivery tracking + retries
If youโre planning a notification platform for millions of users, Java gives you the ergonomics of Spring and the horsepower of the JVM to keep latency low and reliability high.
Top comments (0)