DEV Community

Narednra Reddy Yadama
Narednra Reddy Yadama

Posted on

๐—•๐—ถ๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ต๐—ฒ๐—ฎ๐˜๐˜€๐—ต๐—ฒ๐—ฒ๐˜: ๐—”๐—ช๐—ฆ, ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ, ๐—ฎ๐—ป๐—ฑ ๐—š๐—–๐—ฃ

In todayโ€™s data-driven world, cloud-native big data pipelines are essential for extracting insights and maintaining a competitive edge.

Hereโ€™s a concise breakdown of key components across AWS, Azure, and GCP:

๐Ÿญ. ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐—ด๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป:

AWS: Kinesis (real-time), AWS Data Pipeline (managed workflows)
Azure: Event Hubs (real-time streaming), Data Factory (ETL)
GCP: Pub/Sub (real-time), Dataflow (batch & stream processing)

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ:

AWS: S3 with Lake Formation for secure data lakes
Azure: Azure Data Lake Storage (ADLS), integrates with HDInsight & Synapse
GCP: Google Cloud Storage (GCS) with BigLake for unified data management

๐Ÿฏ. ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด

AWS: EMR (managed Hadoop/Spark), Glue (serverless data integration)
Azure: Databricks (Spark-based analytics), HDInsight (Hadoop)
GCP: Dataproc (managed Spark/Hadoop), Dataflow (Apache Beam-based processing)

๐Ÿฐ. ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ถ๐—ป๐—ด

AWS: Redshift โ€“ scalable, high-performance data warehousing
Azure: Synapse Analytics โ€“ combines SQL Data Warehouse & big data processing
GCP: BigQuery โ€“ serverless, highly scalable, cost-effective analytics

๐Ÿฑ. ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ & ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป

AWS: QuickSight โ€“ scalable BI & reporting
Azure: Power BI โ€“ deeply integrated with Microsoft ecosystem
GCP: Looker โ€“ flexible data visualization & analytics

Each cloud provider has unique strengths.

Selecting the right combination of ingestion, storage, compute, and analytics tools is key to building scalable, cost-effective big data pipelines.

Whether handling real-time streaming or deep data warehousing or batch processing, choosing wisely can optimize both efficiency and costs.

Top comments (0)