DEV Community

Takara Taniguchi
Takara Taniguchi

Posted on

[memo]Droid: A large-scale in-the-wild robot manipulation dataset

Abstract

Propose distributed robot dataset

Training policies

Introduction

  • 6 tasks in 4 locations, labs, offices, real households
  • Training manipulation requires robot manipulation data with recorded manipulation datasets
  • Collecting data at scale

Related works

Datasets in the other ML fields

  • ImageNet, Kitti, Ego4D, Laion = CV
  • Common crawl, The pile = NLP

Robot learning datasets

  • RH20T: 33 tasks in 7 table-top scene
  • BridgeV2 data in 24 scenes

DROID contains 564 scenes across 52 buildings

DROID Data collection

Difficulty: reproducible robot control access

Labeling: tasq.ai

DROID datasets environment

Viewpoint diversity: 1417 cameras, いろんな方向からカメラを設置して,ロボットの情報を取得している

Interaction location diversity

Experimental setup

  • Closing waffle maker
  • place chips on plate
  • Put apple in pot
  • Toasting
  • Clean up desk
  • Cook lentils

Out-of-distribution

  • DROID (7k, 20 scenes)
  • DROID (7k diverse scenes)

Conclusion

Top comments (0)