Abstract
Propose distributed robot dataset
Training policies
Introduction
- 6 tasks in 4 locations, labs, offices, real households
- Training manipulation requires robot manipulation data with recorded manipulation datasets
- Collecting data at scale
Related works
Datasets in the other ML fields
- ImageNet, Kitti, Ego4D, Laion = CV
- Common crawl, The pile = NLP
Robot learning datasets
- RH20T: 33 tasks in 7 table-top scene
- BridgeV2 data in 24 scenes
DROID contains 564 scenes across 52 buildings
DROID Data collection
Difficulty: reproducible robot control access
Labeling: tasq.ai
DROID datasets environment
Viewpoint diversity: 1417 cameras, いろんな方向からカメラを設置して,ロボットの情報を取得している
Interaction location diversity
Experimental setup
- Closing waffle maker
- place chips on plate
- Put apple in pot
- Toasting
- Clean up desk
- Cook lentils
Out-of-distribution
- DROID (7k, 20 scenes)
- DROID (7k diverse scenes)
Conclusion
Top comments (0)