This is a submission for the Algolia Agent Studio Challenge: Consumer-Facing Non-Conversational Experiences
What I Built
Build Buddy is an intelligent PC building assistant that eliminates the frustration of incompatible computer parts through AI-powered, real-time compatibility validation.
The Problem
Building a custom PC is exciting, but compatibility issues are a nightmare:
- ❌ Will this CPU socket match the motherboard?
- ❌ Is DDR4 or DDR5 RAM needed?
- ❌ Will this massive GPU fit in the case?
- ❌ Does the power supply have enough wattage?
Traditional solutions require manually reading specs across dozens of websites, asking in forums, or using outdated compatibility checkers.
Build Buddy solves this with conversational AI that understands PC component relationships.
Demo
🔗 Live Demo: https://build-buddy-pi.vercel.app
📦 Source Code: https://github.com/venkat-training/build-buddy
Try These Queries
Example 1: Component Compatibility
"I want to build a gaming PC with Ryzen 7 7800X3D"
Example 2: Specific Question
"Will RTX 4090 fit in NZXT H510 Flow case?"
Example 3: Detect Issues
"Check compatibility: AMD Ryzen 7800X3D with ASUS Z790 motherboard"
The agent correctly warns this won't work - AM5 socket vs LGA1700!
Screenshots
Build Buddy in Action
Screenshot 1: Ask the agent about your PC build and get instant, intelligent responses
Screenshot 2: 8 specialized Algolia indices with 32 PC components and full compatibility metadata
Screenshot 3: Agent Studio configured with Gemini for intelligent compatibility checking
Screenshot 4: Rich component data with compatibility metadata enables intelligent validation
How I Used Algolia Agent Studio
Build Buddy leverages Agent Studio in a unique way - as an intelligent query interface rather than a traditional chatbot. Here's how:
Architecture Overview
8 Specialized Algolia Indices:
-
pc_cpus- Processors (socket types, TDP, chipsets) -
pc_motherboards- Motherboards (form factors, DDR support) -
pc_gpus- Graphics cards (dimensions, power requirements) -
pc_ram- Memory (DDR types, speeds, capacity) -
pc_psus- Power supplies (wattage, efficiency ratings) -
pc_cases- Cases (clearances, form factor support) -
pc_coolers- CPU coolers (socket compatibility, TDP ratings) -
pc_storage- Storage drives (interface types, speeds)
Total: 32 components with complete compatibility metadata
Agent Configuration
The Build Buddy agent is configured to:
- Search across all 8 indices simultaneously
- Understand component relationships (e.g., CPU socket must match motherboard)
-
Check multi-dimensional compatibility:
- Physical: GPU length vs case clearance
- Electrical: Total power vs PSU wattage
- Interface: RAM DDR type vs motherboard support
- Provide intelligent recommendations based on use case (gaming, workstation, budget)
System Prompt Strategy
The agent is instructed to:
You are a PC building expert. When users ask about components:
1. Search ALL relevant indices for compatibility data
2. Check critical compatibility rules:
- CPU socket MUST match motherboard socket
- RAM DDR type MUST match motherboard
- GPU length must fit case clearance
- PSU wattage must exceed total system power + 20% headroom
3. Warn about incompatibilities proactively
4. Suggest compatible alternatives with reasoning
5. Consider user's budget and use case
Why This Works
Agent Studio excels here because:
- Fast retrieval - Sub-50ms searches across 8 indices
- Contextual understanding - LLM interprets natural language queries
- Multi-index orchestration - Automatically queries relevant component types
- Grounded responses - All recommendations based on actual indexed data, no hallucinations
Why Fast Retrieval Matters
Algolia's speed is critical for this use case:
1. Real-time Compatibility Checking
When a user asks "Will component X work with component Y?", the agent must:
- Search the CPU index (find component X)
- Search the motherboard index (find component Y)
- Cross-reference compatibility attributes
- Generate response
With Algolia: All of this happens in ~100ms total
Without fast search: Users would wait 2-3 seconds per query
2. Multi-Component Queries
Users often ask: "Build a $1500 gaming PC"
The agent must:
- Search ALL 8 indices
- Filter by price range
- Check compatibility between suggested components
- Rank by performance/value
Algolia enables this complex workflow to feel instant.
3. Iterative Refinement
Users refine their builds:
- "What if I swap the CPU?"
- "Show me a cheaper GPU option"
- "Will a bigger PSU help?"
Each question triggers multiple searches. Fast retrieval keeps the conversation flowing naturally.
4. Production-Ready Scale
Algolia's infrastructure provides:
- ✅ Global CDN (low latency worldwide)
- ✅ Automatic caching (repeated queries are instant)
- ✅ 99.99% uptime SLA
- ✅ No infrastructure management needed
This means Build Buddy works for 1 user or 10,000 users without code changes.
Technical Highlights
Data Modeling for Compatibility
Each component includes rich compatibility metadata:
{
"objectID": "amd-ryzen-7-7800x3d",
"name": "AMD Ryzen 7 7800X3D",
"socket": "AM5",
"tdp": 120,
"compatibility": {
"socket_type": "AM5",
"ddr_support": ["DDR5"],
"chipsets": ["X670E", "X670", "B650E", "B650"],
"min_psu_wattage": 105
},
"use_cases": ["gaming", "content_creation"],
"performance_tier": "high_end"
}
This enables the agent to make intelligent decisions like:
- "DDR5 required" → Check RAM compatibility
- "AM5 socket" → Only suggest AM5 motherboards
- "TDP 120W" → Validate cooler capacity
Multi-Dimensional Validation
The agent checks compatibility across multiple dimensions:
Physical Compatibility:
- GPU length vs case clearance
- CPU cooler height vs case height
- Motherboard form factor vs case support
Electrical Compatibility:
- CPU TDP vs cooler rating
- Total system power vs PSU wattage
- PCIe connector availability
Interface Compatibility:
- CPU socket vs motherboard socket
- RAM DDR generation vs motherboard
- Storage interface vs motherboard slots
Intelligent Fallback
The app includes local validation as fallback:
- If Agent Studio is slow, basic checks run client-side
- Users never see errors or blank responses
- Graceful degradation maintains usability
Challenges Overcome
1. API Endpoint Discovery
Challenge: Algolia Agent Studio's endpoint format wasn't immediately obvious.
Solution: Implemented URL fallback logic that tries multiple possible endpoints:
const candidateUrls = [
`https://${APP_ID}.algolia.net/agent-studio/1/agents/...`,
`https://${APP_ID}.algolia.com/agent-studio/1/agents/...`,
// ... more variants
];
This ensures the app works regardless of API changes.
2. Response Parsing
Challenge: Agent Studio returns nested response structures that vary by LLM.
Solution: Created a flexible extraction function that handles multiple formats:
const extractContent = (data) => {
if (data?.parts && Array.isArray(data.parts)) {
return data.parts
.filter(p => p.type === 'text')
.map(p => p.text)
.join('\n');
}
// ... more fallbacks
};
3. Zero-Credential Exposure
Challenge: Need to keep all API keys secure while allowing public access.
Solution:
- All credentials in environment variables (never in code)
-
.gitignoreprotects local.envfiles -
.env.exampleshows structure without real keys - Vercel environment variables for production
- Public demo uses Vercel's secure variable injection
4. Complex Compatibility Logic
Challenge: PC compatibility has dozens of interdependent rules.
Solution: Instead of hardcoding rules, we leverage the LLM's reasoning:
- Store compatibility metadata in Algolia
- Let the agent infer relationships
- Works for new components without code changes
Why This Approach is Unique
Most Agent Studio Projects:
- 💬 Conversational shopping assistants
- 📝 Content summarizers
- 🤖 Customer support chatbots
Build Buddy is Different:
- ✅ Technical domain knowledge - PC building requires understanding complex relationships
- ✅ Multi-index orchestration - 8 interconnected component types
- ✅ Proactive validation - Prevents problems before they occur
- ✅ Real-world utility - Solves an actual pain point for PC builders
Future Enhancements
This is just the beginning! Planned improvements:
- [ ] Expand component library - 100+ components per category
- [ ] Build templates - Pre-configured builds (Gaming, Workstation, Budget)
- [ ] Performance predictions - "This build will run games at 4K/144fps"
- [ ] Price tracking - Historical pricing and deal alerts
- [ ] Community builds - Share and rate PC configurations
- [ ] Assembly guides - Step-by-step build instructions with your specific components
Getting Started
Want to run Build Buddy yourself? Here's the quick version:
Step 1: Clone & Install
git clone https://github.com/venkat-training/build-buddy.git
cd build-buddy
npm install
Step 2: Set Up Algolia (FREE)
- Create account at algolia.com
- Select "Build Plan" (no credit card required)
- Get API credentials from Dashboard
Step 3: Upload Component Data
cp .env.example .env
# Add your Algolia credentials to .env
node upload-to-algolia.js
This creates 8 indices with 32 components.
Step 4: Configure Agent Studio
- Go to Algolia Dashboard → Agent Studio
- Create agent with your LLM provider (we used Gemini - FREE tier)
- Add system prompt from docs
- Publish agent
Step 5: Run the App
cd build-buddy-app
npm install
npm run dev
Visit http://localhost:3000 and start asking questions!
Full documentation: See README.md
Key Takeaways
What I Learned
Agent Studio is incredibly flexible - It's not just for chatbots. Any domain with complex data relationships can benefit.
Fast retrieval enables better UX - When searches are instant, you can build more sophisticated workflows without frustrating users.
LLMs + Structured Data = Magic - The combination of Algolia's fast, accurate search with an LLM's reasoning creates something neither could do alone.
Grounding is critical - By storing all component data in Algolia, the agent can't hallucinate specifications. Everything is verifiable.
Why Algolia Agent Studio?
Before this project, I considered:
- ❌ Building custom RAG pipeline (too complex)
- ❌ Using ChatGPT API directly (no search integration, slower)
- ❌ Traditional rules engine (brittle, hard to maintain)
Agent Studio provided:
- ✅ Built-in search integration
- ✅ Multi-index orchestration
- ✅ LLM flexibility (swap providers easily)
- ✅ Production-ready infrastructure
- ✅ Free tier for development
Cost Breakdown
Total Development Cost: $0
- Algolia Build Plan: FREE (10,000 searches/month)
- Google Gemini API: FREE (15 req/min, 1M tokens/day)
- Vercel Hosting: FREE (hobby tier)
- Development Time: ~20 hours over 3 days
This entire project cost nothing but time!
Conclusion
Build Buddy demonstrates that Agent Studio isn't just for customer service chatbots - it's a powerful platform for building intelligent applications in any domain with complex data relationships.
By combining Algolia's lightning-fast search with an LLM's reasoning capabilities, we created something that would have required weeks of work with traditional approaches.
The PC building domain was perfect for this because:
- Complex relationships - Dozens of compatibility rules
- Fast-changing data - New components released constantly
- Natural language queries - Users don't want to learn technical specs
- Real value - Prevents expensive mistakes
If you're building something with structured data and complex relationships, Agent Studio might be the perfect tool.
Links
- 🌐 Live Demo: https://build-buddy-pi.vercel.app
- 📦 GitHub: https://github.com/venkat-training/build-buddy
- 📚 Documentation: Setup Guide
Built with ❤️ by Venkat
Technologies: React, Vite, Algolia Agent Studio, Google Gemini 1.5 Flash
Challenge: Algolia Agent Studio Challenge - Consumer-Facing Non-Conversational Experiences
Have questions? Drop them in the comments! I'm happy to discuss the technical implementation or help you get started with Agent Studio.




Top comments (0)