DEV Community

Cover image for GraphBit’s Agentic AI Mechanisms Compared to Other Agent Frameworks
Yeahia Sarker
Yeahia Sarker

Posted on

GraphBit’s Agentic AI Mechanisms Compared to Other Agent Frameworks

GraphBit (Rust core + workflow graph + lock‑free concurrency)

  • Execution engine
    • Compiled Rust core schedules a WorkflowGraph with dependency awareness, spawning ready nodes concurrently
    • Per‑node‑type concurrency with atomics (no global semaphore); fast‑path skips permits for simple nodes
    • Python/Node bindings delegate to the Rust executor (low overhead orchestration)
  • What this means
    • Lower orchestration overhead, predictable scheduling, high throughput under load
  • GraphBit scheduling of dependency‑ready nodes

// Select nodes whose dependencies are all completed

let mut ready_ids: Vec<NodeId> = Vec::new();

for nid in remaining.iter() {

let deps = graph_clone.get_dependencies(nid);

if deps.iter().all(|d| completed.contains(d)) {

   `ready_ids.push(nid.clone());`
Enter fullscreen mode Exit fullscreen mode

}

}

  • Spawning tasks with selective permit acquisition (fast path)

// Lightweight spawn; skip permits for non-agent nodes

let _permits = if matches!(node.node_type, NodeType::Agent { .. }) {

Some(concurrency_manager.acquire_permits(&task_info).await?)

} else { None };

  • Lock‑free per‑node concurrency (no global semaphore)

struct NodeTypeConcurrency {

max_concurrent: usize,

current_count: Arc<std::sync::atomic::AtomicUsize>,

wait_queue: Arc<tokio::sync::Notify>,

}

  • Python binding calls into core executor (no Python orchestration loop)

let executor = match config.mode {

ExecutionMode::HighThroughput => CoreWorkflowExecutor::new_high_throughput()

   `.with_default_llm_config(llm_config),`
Enter fullscreen mode Exit fullscreen mode

ExecutionMode::LowLatency => CoreWorkflowExecutor::new_low_latency()

   `.with_default_llm_config(llm_config)`

   `.without_retries()`

   `.with_fail_fast(true),`
Enter fullscreen mode Exit fullscreen mode

// ...

};

Other frameworks (Python‑centric orchestration models)

  • LangChain
    • Model: Chains invoked from Python; parallelism via asyncio with semaphores around ainvoke
    • Implication: Python event loop controls orchestration; concurrency limited by interpreter scheduling and per‑call overhead

sem = asyncio.Semaphore(concurrency)

async def run_with_sem(t: str):

async with sem:

   `return await chain.ainvoke({"task": t})`
Enter fullscreen mode Exit fullscreen mode

results = await asyncio.gather(*[run_with_sem(task) for task in PARALLEL_TASKS])

  • LangGraph
    • Model: Declarative state graph; async graph.ainvoke drives node execution via Python
    • Implication: Python orchestrates graph transitions and concurrency

graph = self.graphs["simple"]

initial_state = {"messages": [], "task": SIMPLE_TASK_PROMPT, "result": None}

result = await graph.ainvoke(initial_state)

  • PydanticAI
    • Model: Agent.run executes sequential/async steps within Python
    • Implication: Concurrency and orchestration occur in Python agents

agent: Agent = self.agents["simple"]

result = await agent.run(SIMPLE_TASK_PROMPT)

  • LlamaIndex
    • Model: Direct LLM calls (acomplete) with parallelism via asyncio semaphores
    • Implication: Python controls batching and concurrency

sem = asyncio.Semaphore(concurrency)

async def run_with_sem(text: str):

async with sem:

   `return await llm.acomplete(text)`
Enter fullscreen mode Exit fullscreen mode

results = await asyncio.gather(*[run_with_sem(t) for t in CONCURRENT_TASK_PROMPTS])

  • CrewAI
    • Model: Define Agents and Tasks; kickoff runs crews; concurrency via asyncio + run_in_executor
    • Implication: Python concurrency governs; crew execution offloaded to thread pool where needed

task = Task(description=task_desc, agent=agent, expected_output="...")

crew = Crew(agents=[agent], tasks=[task], verbose=False)

return await asyncio.get_event_loop().run_in_executor(None, crew.kickoff)

Key technical differences at a glance

  • Orchestration layer
    • GraphBit: Rust executor drives the workflow graph; Python/Node just configure/dispatch
    • Others: Python async/threads orchestrate chains/graphs/agents
  • Concurrency control
    • GraphBit: Per‑node‑type atomic counters, notify queues, selective permits (reduced contention)
    • Others: asyncio semaphores and gather patterns, often per‑pipeline, under Python runtime
  • Scheduling model
    • GraphBit: Dependency‑aware ready‑set scheduling and lock‑free permits in the core
    • Others: Framework‑specific graph/chain semantics, executed via Python event loop

Top comments (0)