DEV Community

Cover image for πŸš€Algorithm Techniques for Efficient Problem Solving
Atul Tripathi
Atul Tripathi

Posted on

πŸš€Algorithm Techniques for Efficient Problem Solving

πŸš€ Must-Know Algorithm Techniques for Efficient Problem Solving

Mastering algorithmic techniques can significantly improve your coding efficiency. Below are some key strategies along with examples and LeetCode problems to help you practice. πŸ’‘


πŸ”Ή 1. Two Pointer Technique πŸƒβ€β™‚οΈπŸƒβ€β™€οΈ

Concept: Use two pointers to efficiently search through a sorted list.

Common Use Cases:

  • Searching in sorted arrays
  • Finding pairs that meet a condition

Example: Find two numbers in a sorted array that sum to a target value.

function twoSumSorted(arr, target) {
  let left = 0, right = arr.length - 1;
  while (left < right) {
    let sum = arr[left] + arr[right];
    if (sum === target) return [arr[left], arr[right]];
    sum < target ? left++ : right--;
  }
  return [];
}
Enter fullscreen mode Exit fullscreen mode

Practice: Two Sum II


πŸ”Ή 2. Prefix Sum βž•

Concept: Compute cumulative sums to quickly answer range sum queries.

Common Use Cases:

  • Fast range sum calculations
  • Detecting patterns in sequences

Example: Compute prefix sums for an array.

function prefixSum(arr) {
  let prefix = [0];
  for (let i = 0; i < arr.length; i++) {
    prefix[i + 1] = prefix[i] + arr[i];
  }
  return prefix;
}
Enter fullscreen mode Exit fullscreen mode

Practice: Range Sum Query


πŸ”Ή 3. Top K Elements πŸ”

Concept: Use sorting or heaps to find the most important elements in a list.

Example: Find the largest k elements.

function topKElements(arr, k) {
  return arr.sort((a, b) => b - a).slice(0, k);
}
Enter fullscreen mode Exit fullscreen mode

Practice: Top K Frequent Elements


πŸ”Ή 4. Sliding Window 🏠

Concept: Use a moving window to optimize range-based computations.

Example: Find the maximum sum of any k consecutive elements.

function maxSumSubarray(arr, k) {
  let sum = 0, maxSum = -Infinity;
  for (let i = 0; i < k; i++) sum += arr[i];
  for (let i = k; i < arr.length; i++) {
    sum += arr[i] - arr[i - k];
    maxSum = Math.max(maxSum, sum);
  }
  return maxSum;
}
Enter fullscreen mode Exit fullscreen mode

Practice: Maximum Subarray


πŸ”Ή 5. Breadth-First Search 🌳

Concept: Explore a graph layer by layer.

Example: Traverse a graph using BFS.

function bfs(graph, start) {
  let queue = [start], visited = new Set(queue);
  while (queue.length) {
    let node = queue.shift();
    console.log(node);
    for (let neighbor of graph[node]) {
      if (!visited.has(neighbor)) {
        visited.add(neighbor);
        queue.push(neighbor);
      }
    }
  }
}
Enter fullscreen mode Exit fullscreen mode

Practice: Binary Tree Level Order Traversal


πŸ”Ή 6. Depth-First Search πŸ•΅οΈ

Concept: Explore one path deeply before backtracking.

Example: Perform DFS on a graph.

function dfs(graph, node, visited = new Set()) {
  if (visited.has(node)) return;
  visited.add(node);
  console.log(node);
  for (let neighbor of graph[node]) {
    dfs(graph, neighbor, visited);
  }
}
Enter fullscreen mode Exit fullscreen mode

Practice: Number of Islands


πŸ”Ή 7. Topological Sort πŸ“‹

Concept: Order tasks when dependencies exist.

Example: Perform topological sorting.

function topologicalSort(graph) {
  let inDegree = {}, queue = [], result = [];
  Object.keys(graph).forEach(node => inDegree[node] = 0);
  Object.values(graph).flat().forEach(node => inDegree[node]++);
  Object.keys(graph).forEach(node => inDegree[node] === 0 && queue.push(node));
  while (queue.length) {
    let node = queue.shift();
    result.push(node);
    graph[node].forEach(neighbor => {
      if (--inDegree[neighbor] === 0) queue.push(neighbor);
    });
  }
  return result;
}
Enter fullscreen mode Exit fullscreen mode

Practice: Course Schedule II


πŸ”Ή 8. Divide and Conquer βœ‚οΈ

Concept: Break a problem into smaller parts and solve them independently.

Example: Implement merge sort.

function mergeSort(arr) {
  if (arr.length < 2) return arr;
  let mid = Math.floor(arr.length / 2);
  let left = mergeSort(arr.slice(0, mid));
  let right = mergeSort(arr.slice(mid));
  return merge(left, right);
}
function merge(left, right) {
  let result = [];
  while (left.length && right.length) {
    result.push(left[0] < right[0] ? left.shift() : right.shift());
  }
  return [...result, ...left, ...right];
}
Enter fullscreen mode Exit fullscreen mode

Practice: Sort an Array


πŸš€ Keep Practicing!

These techniques will significantly improve your problem-solving skills. Keep practicing and refining your approach! πŸ’ͺπŸŽ‰

πŸ’¬ Have questions? Drop them in the comments! πŸ‘‡


Top comments (0)

Some comments may only be visible to logged-in visitors. Sign in to view all comments.