DEV Community

Priscilla Parodi for Elastic

Posted on โ€ข Edited on

5 1 1

Machine Learning - Types of Learning

| Menu | Next Post: Elastic Anomaly Detection - Learning Process and Anomaly Score |

There are different types of ML learning: Supervised Learning, Unsupervised Learning and Reinforcement Learning.

Alt Text

In Supervised Learning input is provided as a labeled dataset with the need for a supervisor, the model processes this data to provide the result and the output data patterns are known to the system.

Alt Text

Unsupervised learning is not supervised, it is self-organized learning. Its main aim is to explore the patterns and predict the output by finding an association between input values.

Alt Text

In Reinforcement Learning, the learning agent works as a reward system, the data is not predefined and the agent interacts with the environment, traveling from one state to another.

Supervised ML vs Unsupervised ML vs Reinforcement ML

Alt Text

Elastic uses Supervised Learning and Unsupervised Learning. The type of analysis that you choose depends on the questions or problems you want to address and the type of data you have available.

Alt Text

Elastic Anomaly Detection

Anomaly detection constructs a probability model and can run continuously to identify unusual events as they occur. (unsupervised)

Elastic Data Frame Analytics

Outlier detection identifies unusual points in a data set by analyzing how close each data point is to others and the density of the cluster of points around it. (unsupervised)

Classification predicts the class or category of a given data point in a dataset. (supervised)

Regression predicts continuous numerical values after it determines certain relationships among your data points. (supervised)

It is also possible to import a model to your Elasticsearch cluster even if the model is not trained by Elastic data frame analytics, following the appropriate JSON schema. Likewise, you can use third-party models to perform Natural Language Processing (NLP) tasks.

To use the Elastic Stack machine learning features, you must have the appropriate subscription level or the free trial period activated and at least one machine learning node in your cluster.

Alt Text

Our goal is to empower users with tools to get value and insights from their Elasticsearch data, and we view machine learning as a natural extension to the search and analytics capabilities in Elasticsearch, thatโ€™s why machine learning jobs are automatically distributed and managed across the Elasticsearch cluster in much the same way that indexes and shards are and one of the big focus areas is adding Machine Learning as integrated capability across all of our solutions.

| Menu | Next Post: Elastic Anomaly Detection - Learning Process and Anomaly Score |

This post is part of a series that covers Artificial Intelligence with a focus on Elastic's (Creators of Elasticsearch) Machine Learning solution, aiming to introduce and exemplify the possibilities and options available, in addition to addressing the context and usability.

Image of Stellar post

๐Ÿš€ Stellar Dev Diaries Series: Episode 1 is LIVE!

Ever wondered what it takes to build a web3 startup from scratch? In the Stellar Dev Diaries series, we follow the journey of a team of developers building on the Stellar Network as they go from hackathon win to getting funded and launching on mainnet.

Read more

Top comments (0)

Image of Stellar post

Check out Episode 1: How a Hackathon Project Became a Web3 Startup ๐Ÿš€

Ever wondered what it takes to build a web3 startup from scratch? In the Stellar Dev Diaries series, we follow the journey of a team of developers building on the Stellar Network as they go from hackathon win to getting funded and launching on mainnet.

Read more

๐Ÿ‘‹ Kindness is contagious

Explore a trove of insights in this engaging article, celebrated within our welcoming DEV Community. Developers from every background are invited to join and enhance our shared wisdom.

A genuine "thank you" can truly uplift someoneโ€™s day. Feel free to express your gratitude in the comments below!

On DEV, our collective exchange of knowledge lightens the road ahead and strengthens our community bonds. Found something valuable here? A small thank you to the author can make a big difference.

Okay