DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

nan_to_num in PyTorch

Buy Me a Coffee

*My post explains torch.nan and torch.inf.

nan_to_num() can get the 0D or more D tensor of zero or more elements, replacing zero or more NaNs(Not a Numbers), positive infinities and negative infinities with zero or more zeros, the greatest finities and the least finities respectively(Default) or specified values from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • nan_to_num() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is nan(Optional-Default:Zero-Type:int, float or bool).
  • The 3rd argument with torch or the 2nd argument with a tensor is posinf(Optional-Default:The greatest finite-Type:int, float or bool).
  • The 4th argument with torch or the 2nd argument with a tensor is neginf(Optional-Default:The lowest finite-Type:int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

my_tensor = torch.tensor([-torch.inf, 7., -5., torch.inf,
                          8., torch.nan, torch.inf, torch.nan])
torch.nan_to_num(input=my_tensor)
my_tensor.nan_to_num()
# tensor([-3.4028e+38, 7.0000e+00, -5.0000e+00, 3.4028e+38,
#         8.0000e+00, 0.0000e+00, 3.4028e+3, 0.0000e+00])

torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([9., 7., -5., -6., 8., 2., -6., 2.])

my_tensor = torch.tensor([[-torch.inf, 7., -5., torch.inf],
                          [8., torch.nan, torch.inf, torch.nan]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[9., 7., -5., -6.],
#         [8., 2., -6., 2.]])

my_tensor = torch.tensor([[[-torch.inf, 7.], [-5., torch.inf]],
                          [[8., torch.nan], [torch.inf, torch.nan]]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[[9., 7.], [-5., -6.]],
#         [[8., 2.], [-6., 2.]]])

my_tensor = torch.tensor([complex(-torch.inf, torch.inf), 7.+0.j,
                          -5.+0.j, complex(torch.inf, -torch.inf),
                          8.+0.j, complex(torch.nan, torch.nan),
                          complex(torch.inf), complex(torch.nan)])
torch.nan_to_num(input=my_tensor)
# tensor([-3.4028e+38+3.4028e+38j, 7.0000e+00+0.0000e+00j,
#         -5.0000e+00+0.0000e+00j, 3.4028e+38-3.4028e+38j,
#         8.0000e+00+0.0000e+00j, 0.0000e+00+0.0000e+00j,
#         3.4028e+38+0.0000e+00j, 0.0000e+00+0.0000e+00j])

torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([9.-6.j, 7.+0.j,
#         -5.+0.j, -6.+9.j,
#         8.+0.j, 2.+2.j,
#         -6.+0.j, 2.+0.j])

my_tensor = torch.tensor([[complex(-torch.inf, torch.inf), 7.+0.j,
                           -5.+0.j, complex(torch.inf, -torch.inf)],
                          [8.+0.j, complex(torch.nan, torch.nan),
                           complex(torch.inf), complex(torch.nan)]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[9.-6.j, 7.+0.j,
#          -5.+0.j, -6.+9.j],
#         [8.+0.j, 2.+2.j,
#          -6.+0.j, 2.+0.j]])

my_tensor = torch.tensor([[[complex(-torch.inf, torch.inf), 7.+0.j],
                           [-5.+0.j, complex(torch.inf, -torch.inf)]],
                          [[8.+0.j, complex(torch.nan, torch.nan)],
                           [complex(torch.inf), complex(torch.nan)]]])
torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.)
# tensor([[[9.-6.j, 7.+0.j],
#          [-5.+0.j, -6.+9.j]],
#         [[8.+0.j, 2.+2.j],
#          [-6.+0.j, 2.+0.j]]])

my_tensor = torch.tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])

torch.nan_to_num(input=my_tensor, nan=2, posinf=-6, neginf=9)
# tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.nan_to_num(input=my_tensor, nan=True, posinf=False, neginf=True)
# tensor([[[True, False], [True, False]],
#         [[False, True], [False, True]]])
Enter fullscreen mode Exit fullscreen mode

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs